1
GATE CSE 1996
Subjective
+1
-0
Let $$A = \left[ {\matrix{ {{a_{11}}} & {{a_{12}}} \cr {{a_{21}}} & {{a_{22}}} \cr } } \right]\,\,$$ and $$B = \left[ {\matrix{ {{b_{11}}} & {{b_{12}}} \cr {{b_{21}}} & {{b_{22}}} \cr } } \right]\,\,$$ be
two matrices such that $$AB=1.$$
Let $$C = A\left[ {\matrix{ 1 & 0 \cr 1 & 1 \cr } } \right]$$ and $$CD=1.$$
Express the elements of $$D$$ in terms of the elements of $$B.$$
2
GATE CSE 1995
MCQ (Single Correct Answer)
+1
-0.3
The rank of the following (n + 1) x (n + 1) matrix, where a is a real number is $$$\left[ {\matrix{ 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr . & . & . & . & . & . & . \cr . & . & . & . & . & . & . \cr . & . & . & . & . & . & . \cr 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr } } \right]$$$
A
1
B
2
C
n
D
Depends on the value of a
3
GATE CSE 1995
MCQ (Single Correct Answer)
+1
-0.3
The rank of the following (n + 1) x (n + 1) matrix, where a is a real number is $$$\left[ {\matrix{ 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr . & . & . & . & . & . & . \cr . & . & . & . & . & . & . \cr . & . & . & . & . & . & . \cr 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr } } \right]$$$
A
1
B
2
C
n
D
Depends on the value of a
4
GATE CSE 1994
Fill in the Blanks
+1
-0
The inverse of the matrix $$\left[ {\matrix{ 1 & 0 & 1 \cr { - 1} & 1 & 1 \cr 0 & 1 & 0 \cr } } \right]$$ is
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12