1
GATE EE 2009
+2
-0.6
The Current Source Inverter shown in Figure is operated by alternately turning on thyristor pairs $$\left( {{T_1},\,\,{T_2}} \right)$$ and $$\left( {{T_3},\,\,{T_4}} \right).$$ If the load is purely resistive, the theoretical maximum output frequency obtainable will be A
$$125$$ $$kHz$$
B
$$250$$ $$kHz$$
C
$$500$$ $$kHz$$
D
$$50$$ $$kHz$$
2
GATE EE 2008
+2
-0.6
A single phase voltage source inverter is feeding a purely inductive load as shown in the figure. The inverter is operated at $$50$$ $$Hz$$ in $${180^0}$$ square wave mode. Assume that the load current does not have any $$dc$$ component. The peak value of the inductor current $${i_0}$$ will be

A
$$6.37$$ $$A$$
B
$$10$$ $$A$$
C
$$20$$ $$A$$
D
$$40$$ $$A$$
3
GATE EE 2007
+2
-0.6
A single - phase voltage source inverter is controlled in a single pulse - width modulated mode with a pulse width of $${150^0}$$ in each half cycle. Total harmonic distortion is defined as
$$THD = {{\sqrt {V_{rms}^2 - V_1^2} } \over {{V_1}}} \times 100,\,\,\,$$ Where $${{V_1}}$$ is the $$rms$$ value of the fundamental component of the voltage. The $$THD$$ of output $$ac$$ voltage waveform is
A
$$65.65\%$$
B
$$48.42\%$$
C
$$31.83\%$$
D
$$30.49\%$$
4
GATE EE 2007
+2
-0.6
A single - phase inverter is operated in $$PWM$$ mode generating a single - pulse of width $$2d$$ in the center of each half cycle as shown in figure. It is found that the output voltage is free from $${5^{th}}$$ harmonic for pulse width $${144^0}.$$ What will be percentage of $${3^{rd}}$$ harmonic present in the output voltage $$\,\left( {{V_{03}}/{V_{01\,\,\,\max }}} \right)?$$ A
$$0.0\%$$
B
$$19.6\,\,\%$$
C
$$31.7\,\,\%$$
D
$$53.9\,\,\%$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement
EXAM MAP
Joint Entrance Examination