1
GATE ME 2024
MCQ (Single Correct Answer)
+1
-0.33

Let $f(.)$ be a twice differentiable function from $ \mathbb{R}^{2} \rightarrow \mathbb{R}$. If $P, \mathbf{x}_{0} \in \mathbb{R}^{2}$ where $\vert \vert P\vert \vert$ is sufficiently small (here $\vert \vert . \vert \vert$ is the Euclidean norm or distance function), then $f (\mathbf{x}_{0} + p) = f(\mathbf{x}_{0}) + \nabla f(\mathbf{x}_{0})^{T}p + \dfrac{1}{2} p^{T} \nabla^{2}f(\psi)p$ where $\psi \in \mathbb{R}^{2}$ is a point on the line segment joining $\mathbf{x}_{0}$ and $\mathbf{x}_{0} + p$. If $\mathbf{x}_{0}$ is a strict local minimum of $f (\mathbf{x})$, then which one of the following statements is TRUE?

A

$\nabla f(x_{0})^{T}p > 0\ \ and\ \ p^{T} \nabla^{2} f( \psi)p = 0$

B

$\nabla f(x_{0})^{T}p = 0\ and\ p^{T} \nabla^{2} f( \psi)p > 0$

C

$\nabla f(x_{0})^{T}p = 0\ and\ p^{T} \nabla^{2} f( \psi)p = 0$

D

$\nabla f(x_{0})^{T}p = 0\ and\ p^{T} \nabla^{2} f( \psi)p < 0$

2
GATE ME 2020 Set 1
MCQ (Single Correct Answer)
+1
-0.33
Define [x] as the greatest integer less than or equal to x, for each x ϵ (-∞, ∞). If y = [x], then area under y for x ϵ [1,4] is
A
1
B
3
C
4
D
6
3
GATE ME 2017 Set 1
MCQ (Single Correct Answer)
+1
-0.3
The value of $$\mathop {\lim }\limits_{x \to 0} \left( {{{{x^3} - \sin \left( x \right)} \over x}} \right)$$ is
A
$$0$$
B
$$3$$
C
$$1$$
D
$$-1$$
4
GATE ME 2016 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The values of $$x$$ for which the function $$f\left( x \right) = {{{x^2} - 3x - 4} \over {{x^2} + 3x - 4}}$$ is NOT continuous are
A
$$4$$ and $$-1$$
B
$$4$$ and $$1$$
C
$$-4$$ and $$1$$
D
$$-4$$ and $$-1$$
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12