1
GATE ME 2022 Set 2
Numerical
+2
-0
Given z = x +iy, i = √-1 C is a circle of radius 2 with the centre at the origin. If the contour C is traversed anticlockwise, then the value of the integral $\frac{1}{2\pi}\int_c\frac{1}{(z-i)(z+4i)}dZ$ is ________ (round off to one decimal place.)
Your input ____
2
GATE ME 2022 Set 1
MCQ (Single Correct Answer)
+2
-0.66

The value of the integral

$\rm \oint \left( \frac{6z}{2z^4 - 3z^3 + 7 z^2 - 3z + 5} \right) dz$

evaluated over a counter-clockwise circular contour in the complex plane enclosing only the pole z = i, where 𝑖 is the imaginary unit, is

A
(-1 + i) π
B
(1 + i) π
C
2(1 - i) π
D
(2 + i) π
3
GATE ME 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
If $$f\left( z \right) = \left( {{x^2} + a{y^2}} \right) + ibxy$$ is a complex analytic function of $$z=x+iy,$$
where $${\rm I} = \sqrt { - 1} ,$$ then
A
$$a=-1,b=-1$$
B
$$a=-1, b=2$$
C
$$a=1, b=2$$
D
$$a=2, b=2$$
4
GATE ME 2016 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The value of $$\oint\limits_\Gamma {{{3z - 5} \over {\left( {z - 1} \right)\left( {z - 2} \right)}}dz} $$ along a closed path $$\Gamma $$ is equal to $$\left( {4\pi i} \right),$$ where $$z=x+iy$$ and $$i = \sqrt { - 1} .$$ The correct path $$\Gamma $$ is
A
GATE ME 2016 Set 2 Engineering Mathematics - Complex Variable Question 12 English Option 1
B
GATE ME 2016 Set 2 Engineering Mathematics - Complex Variable Question 12 English Option 2
C
GATE ME 2016 Set 2 Engineering Mathematics - Complex Variable Question 12 English Option 3
D
GATE ME 2016 Set 2 Engineering Mathematics - Complex Variable Question 12 English Option 4
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12