1
GATE ME 2017 Set 2
+2
-0.6
For the stability of a floating body the
A
centre of buoyancy must coincide with the centre of gravity
B
centre of buoyancy must be above the centre of gravity
C
centre of gravity must be above the centre of buoyancy
D
metacentre must be above the centre of gravity
2
GATE ME 2016 Set 1
Numerical
+2
-0
An inverted U-tube manometer is used to measure the pressure difference between two pipes $$A$$ and $$B,$$ as shown in the figure. Pipe $$A$$ is carrying oil (specific gravity $$= 0.8$$) and pipe $$B$$ is carrying water. The densities of air and water are $$1.16\,\,kg/{m^3}$$ and $$1000\,\,kg/{m^3},$$, respectively. The pressure difference between pipes $$A$$ and $$B$$ is _______________$$kPa.$$

$$Acceleration$$ $$due$$ $$to$$ $$gravity$$ $$g = 10\,m/{s^2}$$

3
GATE ME 2016 Set 2
Numerical
+2
-0
The large vessel shown in the figure contains oil and water. A body is submerged at the interface of oil and water such that $$45$$ percent of its volume is in oil while the rest is in water. The density of the body is _______________ $$kg/{m^3}.$$

The specific gravity of oil is $$0.7$$ and density of water is $$1000$$ $$kg/{m^3}.$$

Acceleration due to gravity $$g = 10\,m/{s^2}$$

4
GATE ME 2016 Set 2
+2
-0.6
Consider a frictionless, massless and leak-proof plug blocking a rectangular hole of dimensions $$2R \times L$$ at the bottom of an open tank as shown in the figure. The head of the plug has the shape of a semi-cylinder of radius $$R.$$ The tank is filled with a liquid of density $$\rho$$ up to the tip of the plug. The gravitational acceleration is $$g.$$ Neglect the effect of the atmospheric pressure.

The force $$F$$ required to hold the plug in its position is

A
$$2\rho {R^2}gL\left( {1 - {\pi \over 4}} \right)$$
B
$$2\rho {R^2}gL\left( {1 + {\pi \over 4}} \right)$$
C
$$\pi {R^2}\rho gL$$
D
$${\pi \over 2}\rho {R^2}gL$$
GATE ME Subjects
EXAM MAP
Medical
NEET