1
GATE EE 2006
MCQ (Single Correct Answer)
+1
-0.3
For a system with the transfer function $$H\left( s \right) = {{3\left( {s - 2} \right)} \over {{s^3} + 4{s^2} - 2s + 1}},\,\,$$ the matrix $$A$$ in the state space form $$\mathop X\limits^ \bullet = AX + BU$$ is equal to
A
$$\left( {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr { - 1} & 2 & { - 4} \cr } } \right)$$
B
$$\left( {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr { - 1} & 2 & { - 4} \cr } } \right)$$
C
$$\left( {\matrix{ 0 & 1 & 0 \cr 3 & { - 2} & 1 \cr 1 & { - 2} & 4 \cr } } \right)$$
D
$$\left( {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr { - 1} & 2 & { - 4} \cr } } \right)$$
2
GATE EE 2003
MCQ (Single Correct Answer)
+1
-0.3
A second order system starts with an initial condition of $$\left( {\matrix{ 2 \cr 3 \cr } } \right)$$ without any external input. The state transition matrix for the system is given by $$\left( {\matrix{ {{e^{ - 2t}}} & 0 \cr 0 & {{e^{ - t}}} \cr } } \right).$$ The state of the system at the end of $$1$$ second is given by.
A
$$\,\,\left( {\matrix{ {0.271} \cr {1.100} \cr } } \right)$$
B
$$\left( {\matrix{ {0.135} \cr {0.368} \cr } } \right)$$
C
$$\left( {\matrix{ {0.271} \cr {0.736} \cr } } \right)$$
D
$$\left( {\matrix{ {0.135} \cr {1.100} \cr } } \right)$$
3
GATE EE 2002
MCQ (Single Correct Answer)
+1
-0.3
The state transition matrix for the system $$\mathop X\limits^ \bullet = AX\,\,$$ with initial state $$X(0)$$ is
A
$${\left( {s{\rm I} - A} \right)^{ - 1}}$$
B
$${e^{AT}}\,X\left( 0 \right)$$
C
Laplace inverse of $$\,\left[ {{{\left( {s{\rm I} - A} \right)}^{ - 1}}} \right]$$
D
Laplace inverse of $$\left[ {{{\left( {s{\rm I} - A} \right)}^{ - 1}}X\left( 0 \right)} \right]$$
4
GATE EE 2001
MCQ (Single Correct Answer)
+1
-0.3
Given the homogeneous state-space equation $$\mathop X\limits^ \bullet = \left[ {\matrix{ { - 3} & 1 \cr 0 & { - 2} \cr } } \right]x$$ the steady state value of $$\,\,{x_{ss}}\,\, = \mathop {Lim}\limits_{t \to \infty } x\left( t \right),$$ given the initial state value of $$x\left( 0 \right) = {\left[ {10 - 10} \right]^T},\,\,is$$
A
$${x_{ss}} = \left[ {\matrix{ 0 \cr 0 \cr } } \right]$$
B
$${x_{ss}} = \left[ {\matrix{ { - 3} \cr { - 2} \cr } } \right]$$
C
$${x_{ss}} = \left[ {\matrix{ { - 10} \cr {10} \cr } } \right]$$
D
$${x_{ss}} = \left[ {\matrix{ \infty \cr \infty \cr } } \right]$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12