1
GATE EE 1995
+1
-0.3
A system is described by the state equation $$\mathop X\limits^ \bullet = AX + BU$$ , The output is given by $$Y=CX$$ Where $$A = \left( {\matrix{ { - 4} & { - 1} \cr 3 & { - 1} \cr } } \right)\,\,B = \left( {\matrix{ 1 \cr 1 \cr } } \right)\,\,C = \left[ {10} \right]$$

Transfer function $$G(s)$$ of the system is

A
$${s \over {{s^2} + 5s + 7}}$$
B
$${1 \over {{s^2} + 5s + 7}}$$
C
$${s \over {{s^2} + 3s + 2}}$$
D
$${1 \over {{s^2} + 3s + 2}}$$
2
GATE EE 1994
+1
-0.3
The matrix of any state space equations for the transfer function $$C(s)/R(s)$$ of the system, shown below in. Figure is A
$$\left( {\matrix{ { - 1} & 0 \cr 0 & 1 \cr } } \right)$$
B
$$\left( {\matrix{ 1 & 0 \cr 0 & { - 1} \cr } } \right)$$
C
$$\left[ { - 1} \right]$$
D
$$\left[ { 3} \right]$$
3
GATE EE 1993
+1
-0.3
Consider a second order system whose state space representation is of the form $$\mathop X\limits^ \bullet = AX + BU.$$ If $$\,{x_1}\,\,\left( t \right)\, = {x_2}\,\left( t \right),$$ then system is
A
controllable
B
uncontrollable
C
observable
D
unstable
4
GATE EE 1993
+1
-0.3
The transfer function for the state variable representation $$\mathop X\limits^ \bullet = AX + BU,\,\,Y = CX + DU,$$ is given by
A
$$D + C{\left( {s{\rm I} - A} \right)^{ - 1}}\,\,B$$
B
$$B{\left( {s{\rm I} - A} \right)^{ - 1}}\,C + D$$
C
$$D{\left( {s{\rm I} - A} \right)^{ - 1}}\,B + C$$
D
$$C{\left( {sl - A} \right)^{ - 1}}\,D + B$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement
EXAM MAP
Joint Entrance Examination