1
GATE ME 2016 Set 2
Numerical
+2
-0
Consider fluid flow between two infinite horizontal plates which are parallel (the gap between them being $$50$$ $$mm$$). The top plate is sliding parallel to the stationary bottom plate at a speed of $$3$$ $$m/s.$$ The flow between the plates is solely due to the motion of the top plate. The force per unit area (magnitude) required to maintain the bottom plate stationary is _______________ $$N/{m^2}.$$
Viscosity of the fluid $$\mu = 0.44\,\,kg/m$$-$$s$$ and density $$\rho = 888$$ $$kg/{m^3}.$$
Your input ____
2
GATE ME 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Which of the following statement are TRUE, when the cavitation parameter $$\sigma = 0?$$
(i) The local pressure is reduced to vapor pressure.
(ii) Cavitation starts
(iii) Boiling of liquid starts
(iv) Cavitations stops
(i) The local pressure is reduced to vapor pressure.
(ii) Cavitation starts
(iii) Boiling of liquid starts
(iv) Cavitations stops
3
GATE ME 2014 Set 1
Numerical
+2
-0
In a simple concentric shaft-bearing arrangement, the lubricant flows in the $$2$$ $$mm$$ gap between the shaft and the bearing. The flow may be assumed to be a plane Couette flow with zero pressure gradient. The diameter of the shaft is $$100$$ $$mm$$ and its tangential speed is $$10$$ $$m/s.$$ The dynamic viscosity of the lubricant is $$0.1$$ $$kg/m.s.$$ The frictional resisting force (in newton) per $$100$$ $$mm$$ length of the bearing is ______________.
Your input ____
4
GATE ME 2010
MCQ (Single Correct Answer)
+2
-0.6
A lightly loaded full journal bearing has a journal of $$50mm,$$ bush bore of $$50.50mm$$ and bush length of $$20mm.$$ if rotational speed of journal is $$1200rpm$$ and average viscosity of liquid lubricant is $$0.03$$ $$Pa$$- $$sec,$$ the power loss (in Watt) will be :
Questions Asked from Fluid Properties (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude