1
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Consider an LTI system with impulse response $$h\left(t\right)=e^{-5t}u\left(t\right)$$ . If the output of the system is $$y\left(t\right)=e^{-3t}u\left(t\right)-e^{-5t}u\left(t\right)$$ then the input, x(t), is given by
A
$$e^{-3t}u\left(t\right)$$
B
$$2e^{-3t}u\left(t\right)$$
C
$$e^{-5t}u\left(t\right)$$
D
$$2e^{-5t}u\left(t\right)$$
2
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Consider an LTI system with transfer function $$H\left(s\right)=\frac1{s\left(s+4\right)}$$.If the input to the system is cos(3t) and the steady state output is $$A\sin\left(3t+\alpha\right)$$, then the value of A is
A
1/30
B
1/15
C
3/4
D
4/3
3
GATE EE 2013
MCQ (Single Correct Answer)
+1
-0.3
The impulse response of a system is h(t) = tu(t). For an input u(t − 1), the output is
A
$$\frac{t^2}2u\left(t\right)$$
B
$$\frac{t\left(t-1\right)}2u\left(t-1\right)$$
C
$$\frac{\left(t-1\right)^2}2u\left(t-1\right)$$
D
$$\frac{t^2-1}2u\left(t-1\right)$$
4
GATE EE 2013
MCQ (Single Correct Answer)
+1
-0.3
Assuming zero initial condition, the response y(t) of the system given below to a unit step input u(t) is GATE EE 2013 Signals and Systems - Linear Time Invariant Systems Question 43 English
A
u(t)
B
tu(t)
C
$$\frac{t^2}2u\left(t\right)$$
D
$$e^{-t}u\left(t\right)$$
GATE EE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12