1
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
A partial order P is defined on the set of natural numbers as following. Herw x/y denotes integer division.
i) (0, 0) $$ \in \,P$$.
ii) (a, b) $$ \in \,P$$ if and only a %
$$10\, \le $$ b % 10 and
)a/10, b/10) $$ \in \,P$$.

Consider the following ordered pairs:
$$\matrix{ {i)\,\,\,(101,\,22)} & {ii)\,\,\,(22,\,\,101)} \cr {iii)\,\,\,(145,\,\,265)} & {iv)\,\,\,(0,\,153)} \cr } $$
Which of these ordered pairs of natural numbers are comtained in P?

A
(i), (iii) and (iv)
B
(ii) and (iv)
C
(i) and (iv)
D
(iii) and (iv)
2
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider the set of (column) vectors defined by $$X = \,\{ \,x\, \in \,{R^3}\,\left| {{x_1}\, + \,{x_2}\, + \,{x_3} = 0} \right.$$, where $${x^T} = \,{[{x_1}\, + \,{x_2}\, + \,{x_3}]^T}\} .$$ Which of the following is TRUE?
A
$$\left\{ {{{\left[ {1,\, - 1,\,0} \right]}^T},\,{{\left[ {1,\,\,0 ,- 1,\,} \right]}^T}} \right\}$$ is a basis for the subspace X.
B
$$\left\{ {{{\left[ {1,\, - 1,\,0} \right]}^T},\,{{\left[ {1,\,\,0,\, - 1,\,} \right]}^T}} \right\}$$ is a linearly independent set, but it does not span X and therefore is not a basis of X.
C
X is not a subspace of $${R^3}$$.
D
None of the above.
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Let E, F and G be finite sets.
Let $$X = \,\left( {E\, \cap \,F\,} \right)\, - \,\left( {F\, \cap \,G\,} \right)$$
and $$Y = \,\left( {E\, - \left( {E\, \cap \,G} \right)} \right)\, - \,\left( {E\, - \,F\,} \right)$$. Which one of the following is true?
A
$$X\, \subset \,Y$$
B
$$X\, \supset \,Y$$
C
$$X\, = \,Y$$
D
$$X\, - \,Y\, \ne \,\emptyset \,\,and\,\,X\, - \,Y\, \ne \,\emptyset \,\,$$
4
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Given a set of elements N = {1, 2, ....., n} and two arbitrary subsets $$A\, \subseteq \,N\,$$ and $$B\, \subseteq \,N\,$$, how many of the n! permutations $$\pi $$ from N to N satisfy $$\min \,\left( {\pi \,\left( A \right)} \right) = \min \,\left( {\pi \,\left( B \right)} \right)$$, where min (S) is the smallest integer in the set of integers S, and $${\pi \,\left( S \right)}$$ is the set of integers obtained by applying permutation $${\pi}$$ to each element of S?
A
$$\left( {n - \left| {A\, \cup \,B} \right|} \right)\,\left| A \right|\,\left| B \right|$$
B
$$\left( {{{\left| A \right|}^2} + {{\left| B \right|}^2}} \right)\,{n^2}$$
C
$$n!{{\left| {A\, \cap \,B} \right|} \over {\left| {A\, \cup B} \right|}}$$
D
$$\,{{{{\left| {A\, \cap \,B} \right|}^2}} \over {\left( {\matrix{ n \cr {\left| {A\, \cup \,B} \right|} \cr } } \right)}}$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12