1
GATE ME 2016 Set 2
Numerical
+2
-0
A mass of $$2000$$ kg is currently being lowered at a velocity of $$2$$ $$m/s$$ from the drum as shown in the figure. The mass moment of inertia of the drum is $$150$$ kg-m2. On applying the brake, the mass is brought to rest in a distance of $$0.5$$ $$m.$$ The energy absorbed by the brake (in $$kJ$$) is __________________. 2
GATE ME 2014 Set 3
Numerical
+2
-0
A drum brake is shown in the figure. The drum is rotating in anticlockwise direction. The coefficient of friction between drum and shoe is $$0.2.$$ The dimensions shown in the figure are in mm. The braking torque (in $$N.m$$) for the brake shoe is ________. 3
GATE ME 2012
+2
-0.6
A force of $$400$$ $$N$$ is applied to the brake drum of $$0.5$$ $$m$$ diameter in a band-brake system as shown in the figure, where the wrapping angle is $${180^ \circ }$$ . If the coefficient of friction between the drum and the band is $$0.25,$$ the braking torque applied, in $$N.m$$ is A
$$100.6$$
B
$$54.4$$
C
$$22.1$$
D
$$15.7$$
4
GATE ME 2010
+2
-0.6
A band brake having band-width of $$80mm,$$ drum diameter of $$250mm,$$ coefficient of friction of $$0.25$$ and angle of wrap of $$270$$ degrees is required to exert a friction torque of $$1000N$$-$$m$$. The maximum tension (in $$kN$$) developed in the band is
A
$$1.88$$
B
$$3.56$$
C
$$6.12$$
D
$$11.56$$
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude
EXAM MAP
Medical
NEET