1
GATE EE 2006
MCQ (Single Correct Answer)
+2
-0.6
A $$3$$ phase, $$10$$ $$kW$$, $$400$$ $$V,$$ $$4$$ pole, $$50$$ $$Hz$$, star connected induction motor draws $$20$$ A on full load. Its no load and blocked rotor test data are given below.
No Load Test: $$400V$$ $$6A$$ $$1002W$$
Blocked Rotor Test: $$90V$$ $$15A$$ $$762W$$
Neglecting copper loss in No Load Test and core loss in Blocked Rotor Test, estimate motor's full load efficiency.
No Load Test: $$400V$$ $$6A$$ $$1002W$$
Blocked Rotor Test: $$90V$$ $$15A$$ $$762W$$
Neglecting copper loss in No Load Test and core loss in Blocked Rotor Test, estimate motor's full load efficiency.
2
GATE EE 2006
MCQ (Single Correct Answer)
+2
-0.6
The speed of a $$4$$-pole induction motor is controlled by varying the supply frequency while maintaining the ratio of supply voltage to supply frequency $$(V/f)$$ constant. At rated frequency of $$50$$ $$Hz$$ and rated voltage of $$400$$ $$V$$ its speed is $$1440$$ $$rpm$$. Find the speed at $$30$$ $$Hz,$$ if the load torque is constant
3
GATE EE 2006
MCQ (Single Correct Answer)
+2
-0.6
A $$3$$ phase, $$4$$ pole, $$400$$ $$V,$$ $$50$$ $$Hz,$$ star connected induction motor has following circuit parameters $${r_1} = 1.0\Omega ,\,{r_2} = 0.5\Omega ,$$ $${\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {x_1} = x{'_2} = 1.2\Omega ,{\mkern 1mu} {x_m} = 35\Omega $$
The starting torque when the motor is started direct-on-line is (use approximate equivalent circuit model)
The starting torque when the motor is started direct-on-line is (use approximate equivalent circuit model)
4
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
Under no load condition, if the applied voltage to an induction motor is reduced
from the rated voltage to half the rated value,
Questions Asked from Induction Machines (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE 2024 (1)
GATE EE 2023 (1)
GATE EE 2022 (2)
GATE EE 2018 (1)
GATE EE 2017 Set 2 (1)
GATE EE 2017 Set 1 (1)
GATE EE 2015 Set 1 (1)
GATE EE 2015 Set 2 (1)
GATE EE 2014 Set 2 (1)
GATE EE 2014 Set 1 (1)
GATE EE 2013 (1)
GATE EE 2012 (1)
GATE EE 2011 (1)
GATE EE 2009 (1)
GATE EE 2008 (5)
GATE EE 2007 (4)
GATE EE 2006 (3)
GATE EE 2005 (4)
GATE EE 2004 (3)
GATE EE 2003 (4)
GATE EE 2000 (3)
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits