1
GATE EE 2017 Set 1
Numerical
+2
-0
A 375W, 230 V, 50 Hz capacitor start single-phase induction motor has the following constants
for the main and auxiliary windings (at starting): $$Z_m=\left(12.50\;+\;j15.75\right)\;\Omega$$ (main winding),
$$Z_a=\left(24.50\;+\;j12.75\right)\;\Omega$$(auxiliary winding). Neglecting the magnetizing branch the value of the
capacitance (in µF ) to be added in series with the auxiliary winding to obtain maximum torque
at starting is _______.
Your input ____
2
GATE EE 2015 Set 1
Numerical
+2
-0
A 3-phase 50 Hz square wave (6-step) VSI feeds a 3-phase, 4 pole induction motor. The VSI line voltage has a dominant 5th harmonic component. If the operating slip of the motor with respect to fundamental component voltage is 0.04, the slip of the motor with respect to 5th harmonic component of voltage is _________.
Your input ____
3
GATE EE 2015 Set 2
Numerical
+2
-0
A 220 V, 3-phase, 4-pole, 50 Hz inductor motor of wound rotor type is supplied at rated voltage and frequency. The stator resistance, magnetizing reactance, and core loss are negligible. The maximum torque produced by the rotor is 225 % of full load torque and it occurs at 15% slip. The actual rotor resistance is 0.03 Ω/phase. The value of external resistance (in Ohm) which must be inserted in a rotor phase if the maximum torque is to occur at start is ______.
Your input ____
4
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A three-phase slip-ring induction motor, provided with a commutator winding, is shown in
the figure. The motor rotates in clockwise direction when the rotor windings are closed.
If the rotor winding is open circuited and the system is made to run at rotational speed fr with
the help of prime-mover in anti-clockwise direction, then the frequency of voltage across slip
rings is f1 and frequency of voltage across commutator brushes is f2. The values of f1 and f2
respectively are
Questions Asked from Induction Machines (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE 2024 (1)
GATE EE 2023 (1)
GATE EE 2022 (2)
GATE EE 2018 (1)
GATE EE 2017 Set 2 (1)
GATE EE 2017 Set 1 (1)
GATE EE 2015 Set 1 (1)
GATE EE 2015 Set 2 (1)
GATE EE 2014 Set 2 (1)
GATE EE 2014 Set 1 (1)
GATE EE 2013 (1)
GATE EE 2012 (1)
GATE EE 2011 (1)
GATE EE 2009 (1)
GATE EE 2008 (5)
GATE EE 2007 (4)
GATE EE 2006 (3)
GATE EE 2005 (4)
GATE EE 2004 (3)
GATE EE 2003 (4)
GATE EE 2000 (3)
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics