1
GATE ECE 2015 Set 3
Numerical
+2
-0
Consider the differential equation $${{{d^2}x\left( t \right)} \over {d{t^2}}} + 3{{dx\left( t \right)} \over {dt}} + 2x\left( t \right) = 0$$
Given $$x(0) = 20$$ & $$\,x\left( 1 \right) = {{10} \over e},$$ where $$e=2.718,$$

The value of $$x(2)$$ is

Your input ____
2
GATE ECE 2015 Set 3
Numerical
+1
-0
The Newton-Raphson method is used to solve the equation $$f\left( x \right) = {x^3} - 5{x^2} + 6x - 8 = 0.$$ Taking the initial guess as $$x=5$$, the solution obtained at the end of the first iteration is ________.
Your input ____
3
GATE ECE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
If $$C$$ is a circle of radius $$r$$ with centre $${z_0}$$ in the complex $$z$$-plane and if $$'n'$$ is a non-zero integer, then $$\oint\limits_c {{{dz} \over {{{\left( {z - {z_0}} \right)}^{n + 1}}}}} $$ equals
A
$$2\pi nj$$
B
$$0$$
C
$${{nj} \over {2\pi }}$$
D
$$2\pi n$$
4
GATE ECE 2015 Set 3
Numerical
+1
-0
Consider the function $$g\left( t \right) = {e^{ - t}}\,\sin \left( {2\pi t} \right)u\left( t \right)$$ ,where $$u(t)$$ is the unit step function. The area under $$g(t)$$ is _______________.
Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12