1
GATE ECE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Suppose x $$\left[ n \right]$$ is an absolutely summable discrete-time signal. Its z-transform is a rational function with two poles and two zeroes. The poles are at z = ± 2j. Which one of the following statements is TRUE for the signal x=$$\left[ n \right]$$ ?
A
It is a finite duration signal.
B
It is a causal signal.
C
It is a non-causal signal.
D
It is a periodic signal.
2
GATE ECE 2015 Set 3
MCQ (Single Correct Answer)
+1
-0.3
The impulse response of an LTI system can be obtained by
A
differentiating the unit ramp response
B
differentiating the unit step response
C
integrating the unit ramp response
D
integrating the unit step response
3
GATE ECE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
The complex envelope of the bandpass signal $$x(t)\, = \, - \sqrt 2 \left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right)\sin \left( {\pi t - {\pi \over 4}} \right),$$ centered about f = $${1 \over {2\,}}\,Hz,$$ is
A
$$\left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right){e^{j{\pi \over 4}}}$$
B
$$\left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right){e^{ - j{\pi \over 4}}}$$
C
$$\sqrt 2 \left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right){e^{j{\pi \over 4}}}$$
D
$$\sqrt 2 \left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right){e^{ - j{\pi \over 4}}}$$
4
GATE ECE 2015 Set 3
Numerical
+2
-0
Two sequence $${x_1}\left[ n \right]$$ and $${x_2}\left[ n \right]$$ have the same energy.
Suppose $${x_1}\left[ n \right]$$ $$ = \alpha \,{0.5^n}\,u\left[ n \right],$$ where $$\alpha $$ is a positive real number and $$u\left[ n \right]\,$$ is the unit step sequence. Assume $$${x_2}\left[ n \right] = \,\left\{ {\matrix{ {\sqrt {1.5} } & {for\,\,\,n = 0,1} \cr 0 & {otherwise} \cr } } \right.$$$

Then the value of $$\,\alpha $$ is________.

Your input ____
EXAM MAP