1
GATE ECE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Suppose x $$\left[ n \right]$$ is an absolutely summable discrete-time signal. Its z-transform is a rational function with two poles and two zeroes. The poles are at z = ± 2j. Which one of the following statements is TRUE for the signal x=$$\left[ n \right]$$ ?
A
It is a finite duration signal.
B
It is a causal signal.
C
It is a non-causal signal.
D
It is a periodic signal.
2
GATE ECE 2015 Set 3
MCQ (Single Correct Answer)
+1
-0.3
The impulse response of an LTI system can be obtained by
A
differentiating the unit ramp response
B
differentiating the unit step response
C
integrating the unit ramp response
D
integrating the unit step response
3
GATE ECE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
The complex envelope of the bandpass signal $$x(t)\, = \, - \sqrt 2 \left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right)\sin \left( {\pi t - {\pi \over 4}} \right),$$ centered about f = $${1 \over {2\,}}\,Hz,$$ is
A
$$\left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right){e^{j{\pi \over 4}}}$$
B
$$\left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right){e^{ - j{\pi \over 4}}}$$
C
$$\sqrt 2 \left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right){e^{j{\pi \over 4}}}$$
D
$$\sqrt 2 \left( {{{\sin (\pi t/5)} \over {\pi t/5}}} \right){e^{ - j{\pi \over 4}}}$$
4
GATE ECE 2015 Set 3
Numerical
+2
-0
Two sequence $${x_1}\left[ n \right]$$ and $${x_2}\left[ n \right]$$ have the same energy.
Suppose $${x_1}\left[ n \right]$$ $$ = \alpha \,{0.5^n}\,u\left[ n \right],$$ where $$\alpha $$ is a positive real number and $$u\left[ n \right]\,$$ is the unit step sequence. Assume $$${x_2}\left[ n \right] = \,\left\{ {\matrix{ {\sqrt {1.5} } & {for\,\,\,n = 0,1} \cr 0 & {otherwise} \cr } } \right.$$$

Then the value of $$\,\alpha $$ is________.

Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12