1
GATE ECE 2000
MCQ (Single Correct Answer)
+2
-0.6
In Fig., the steady state output voltage corresponding to the input voltage $$\left( {3 + 4\sin \,\,100\,t} \right)$$ $$V$$ is GATE ECE 2000 Network Theory - Sinusoidal Steady State Response Question 32 English
A
$$3 + {4 \over {\sqrt 2 }}\sin \left( {100\,t - {\pi \over 4}} \right)\,\,V$$
B
$$3 + 4\sqrt 2 \sin \left( {100\,t - {\pi \over 4}} \right)\,\,V$$
C
$${3 \over 2} + {4 \over {\sqrt 2 }}\sin \left( {100\,t + {\pi \over 4}} \right)\,\,V$$
D
$$3 + 4\sin \left( {100\,t - {\pi \over 4}} \right)\,\,V$$
2
GATE ECE 2000
Subjective
+5
-0
For the circuit in Fig. Which is in steady state, GATE ECE 2000 Network Theory - Sinusoidal Steady State Response Question 12 English

(a)Find the frequency $${\omega _0}$$ at which the magnitude of the impedance across terminals a, b reaches maximum.

(b) Find the impedance across a, b at the frequency $${\omega _0}$$.

(c) If $${v_i}\left( t \right) = V\,\,\sin \left( {{\omega _0}t} \right),$$ find $${i_L}\left( t \right),\,\,{i_c}\left( t \right),{i_R}\left( t \right).$$

3
GATE ECE 2000
MCQ (Single Correct Answer)
+1
-0.3

In the circuit of Fig., the value of the voltage source E is

GATE ECE 2000 Network Theory - Network Elements Question 40 English
A
-16 V
B
4 V
C
-6 V
D
16 V
4
GATE ECE 2000
MCQ (Single Correct Answer)
+2
-0.6

For the circuit in Fig. the voltage V0 is

GATE ECE 2000 Network Theory - Network Elements Question 22 English
A
2 V
B
1 V
C
- 1 V
D
None of the above
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12