1
GATE ECE 2000
Subjective
+5
-0
For the circuit in Fig. GATE ECE 2000 Network Theory - Miscellaneous Question 1 English

(a) Find the Thevenin equivalent of the sub circuit faced by the capacitor across the terminals a, b.

(b) Find $$v_c\left(t\right),\;t>0,\;given\;v_c(0)\;=\;0.$$

(c) Find i(t), t>0.

2
GATE ECE 2000
MCQ (Single Correct Answer)
+1
-0.3

In the circuit of Fig., the votage v(t) is

GATE ECE 2000 Network Theory - Network Elements Question 41 English
A
$$\mathrm e^{\mathrm{at}\;}-\;\mathrm e^\mathrm{bt}$$
B
$$\mathrm e^{\mathrm{at}\;}+\;\mathrm e^\mathrm{bt}$$
C
$$\mathrm{ae}^{\mathrm{at}\;}-\;b\mathrm e^\mathrm{bt}$$
D
$$\mathrm{ae}^{\mathrm{at}\;}+\;b\mathrm e^\mathrm{bt}$$
3
GATE ECE 2000
MCQ (Single Correct Answer)
+1
-0.3
Given that $$L\left[ {f\left( t \right)} \right]\, = \,$$ $${{s + 2} \over {{s^2} + 1}},$$ $$$L\left[ {g\left( t \right)} \right] = {{{s^2} + 1} \over {\left( {s + 3} \right)\left( {s + 2} \right)}},$$$ $$$h\left( t \right) = \int\limits_0^t {f\left( \tau \right)\,g\left( {t - \tau } \right)\,d\tau ,} $$$ $$L\left[ {h\left( t \right)} \right]$$ is
A
$${{{s^2} + 1} \over {s + 3}}$$
B
$${1 \over {s + 3}}$$
C
$${{{s^2} + 1} \over {\left( {s + 3} \right)\left( {s + 2} \right)}} + {{s + 2} \over {{s^2} + 1}}$$
D
None of the above
4
GATE ECE 2000
MCQ (Single Correct Answer)
+1
-0.3
A system with an input x(t) and an output y(t) is described by the relation: y(t) = t x(t). This system is
A
linear and time-invariant.
B
linear and time-varying.
C
non-linear and time-invariant.
D
non-linear and time-varying.
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12