1
GATE ECE 2000
Subjective
+5
-0
For the circuit in Fig. Which is in steady state, GATE ECE 2000 Network Theory - Sinusoidal Steady State Response Question 11 English

(a)Find the frequency $${\omega _0}$$ at which the magnitude of the impedance across terminals a, b reaches maximum.

(b) Find the impedance across a, b at the frequency $${\omega _0}$$.

(c) If $${v_i}\left( t \right) = V\,\,\sin \left( {{\omega _0}t} \right),$$ find $${i_L}\left( t \right),\,\,{i_c}\left( t \right),{i_R}\left( t \right).$$

2
GATE ECE 2000
MCQ (Single Correct Answer)
+1
-0.3
Given that $$L\left[ {f\left( t \right)} \right]\, = \,$$ $${{s + 2} \over {{s^2} + 1}},$$ $$$L\left[ {g\left( t \right)} \right] = {{{s^2} + 1} \over {\left( {s + 3} \right)\left( {s + 2} \right)}},$$$ $$$h\left( t \right) = \int\limits_0^t {f\left( \tau \right)\,g\left( {t - \tau } \right)\,d\tau ,} $$$ $$L\left[ {h\left( t \right)} \right]$$ is
A
$${{{s^2} + 1} \over {s + 3}}$$
B
$${1 \over {s + 3}}$$
C
$${{{s^2} + 1} \over {\left( {s + 3} \right)\left( {s + 2} \right)}} + {{s + 2} \over {{s^2} + 1}}$$
D
None of the above
3
GATE ECE 2000
MCQ (Single Correct Answer)
+1
-0.3
A system with an input x(t) and an output y(t) is described by the relation: y(t) = t x(t). This system is
A
linear and time-invariant.
B
linear and time-varying.
C
non-linear and time-invariant.
D
non-linear and time-varying.
4
GATE ECE 2000
MCQ (Single Correct Answer)
+1
-0.3
The Fourier Transform of the signal $$x(t) = {e^{ - 3{t^2}}}$$ is of the following form, where A and B are constants:
A
$$A{e^{ - B\left| f \right|}}$$
B
$$A{e^{ - Bf}}$$
C
$$A + B{\left| f \right|^2}$$
D
$$A{e^{ - B{f^2}}}$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12