1
GATE ECE 2000
MCQ (Single Correct Answer)
+1
-0.3
A system described by the transfer function $$$H\left(s\right)=\frac1{s^3+\alpha s^2+ks+3}$$$ is stable. The constraints on $$\alpha$$ and k are,
A
$$\alpha>0,\;\alpha k<3$$
B
$$\alpha>0,\;\alpha k\;>\;3$$
C
$$\alpha\;<\;0,\;\alpha k\;>\;3$$
D
$$\alpha\;>\;0,\;\alpha k\;<\;3$$
2
GATE ECE 2000
Subjective
+5
-0
A certain linear, time-invariant system has the state and output representation shown below: $$$\eqalign{ & \left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ { - 2} & 1 \cr 0 & { - 3} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 1 \cr 0 \cr } } \right]u \cr & y = \left( {\matrix{ 1 & 1 \cr } } \right)\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] \cr} $$$
(a) Find the eigen values (natural frequencies) of the system.
(b)If u(t)=$$\delta \left( t \right)$$ and x1(0+)=x2(0+)=0, find x1(t),x2(t) and y(t), for t>0.
(c)When the input is zero, choose initial conditions $${x_1}\left( {{0^ + }} \right)$$ and $${x_2}\left( {{0^ + }} \right)$$ such that $$y\left( t \right) = A{e^{ - 2t}}$$ for t>0
3
GATE ECE 2000
MCQ (Single Correct Answer)
+2
-0.6
In the figure, the J and K inputs of all the four Flip-Flops are made high. The frequency of the signal at output Y is GATE ECE 2000 Digital Circuits - Sequential Circuits Question 44 English
A
0.833 KHz
B
1.0 KHz
C
0.91 KHz
D
0.77 KHZ
4
GATE ECE 2000
MCQ (Single Correct Answer)
+1
-0.3
The number of comparators in 4-bit flash ADC is
A
4
B
5
C
15
D
16
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12