1
GATE ECE 1999
Subjective
+5
-0
A plane wave in free space with
$$\overrightarrow E = \left( {\sqrt \pi } \right)\left( {10.0\,\widehat x + 11.8\,\widehat y} \right)\exp \left[ {j\left( {4\pi \times {{10}^8}\,t - k\,z} \right)} \right]$$
where $$\widehat x$$ and $$\widehat y$$ are unit vectors in the $$x$$- and $$y$$-directions respectively is incident normally on a semi-infinite block of ice as shown in Fig. For ice, $$\mu = {\mu _0},\,\,\,\sigma = 0$$ and $$\varepsilon = 9{\varepsilon _0}\left( {1 - j0.001} \right)$$.

(a) Calculate the average power density associated with the incident wave.

(b) Calculate the skin depth in ice.

(c) Estimate the average power density at a distance of 5 times the skins depth in the ice block, measured from the interface.

GATE ECE 1999 Electromagnetics - Uniform Plane Waves Question 11 English
2
GATE ECE 1999
MCQ (Single Correct Answer)
+2
-0.6
A transmitting antenna radiates 251 W isotropically. A receiving antenna, located 100m away from the transmitting antenna, has an effective aperture of 500 cm2. The total power received by the antenna is
A
10 nW
B
1 $$\mu $$ W
C
20 $$\mu $$ W
D
100 $$\mu $$ W
3
GATE ECE 1999
Subjective
+5
-0
The average power of an omni-directional antenna varies as the magnitude of cos($$\theta $$) where $$\theta $$ is the azimuthal angle. Calculate the maximum Directive Gain of the antenna and the angles at which it occurs.
4
GATE ECE 1999
Subjective
+5
-0
A 100 m section of an air-filled rectangular wave-guide operating in the $$T{E_{10}}$$ mode has a cross-sectional dimension of 1.071 cm $$ \times $$ 0.5 cm. Two pulses carriers of 21 GHz and 28 GHz are simultaneously launched at one end of the wave-guide section. What is the time delay difference between the two pulses at the other end of the waveguide?
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12