1
GATE ECE 1999
Subjective
+5
-0
In the circuit of figure, the switch $$'S'$$ has remained open for a long time. The switch closes instantaneously at $$ t = 0$$. GATE ECE 1999 Network Theory - Transient Response Question 6 English n

(a) Find $${V_0}$$ for $$t \le 0$$ and as $$t \to \infty $$.
(b) Write an expression for $${V_0}$$ as a function of time for $$0 \le t \le \infty $$.
(c) Evaluate $${V_0}$$ at $$t = 25\,\,\mu $$sec.

2
GATE ECE 1999
MCQ (Single Correct Answer)
+1
-0.3
A 2-port network is shown in figure. The parameter $${h_{21}}$$ for this network can be given by GATE ECE 1999 Network Theory - Two Port Networks Question 34 English
A
- 1/2
B
+ 1/2
C
- 3/2
D
+ 3/2
3
GATE ECE 1999
Subjective
+5
-0
A coil with a quality factor $$(Q)$$ of $$10$$ is put in series with a capacitor $${C_1}$$ of $$10\,\,\mu F,$$ and the combination is found to draw maximum current when a sinusoidal voltage of frequency $$50$$ $$Hz$$ is applied. A second capacitor $${C_2}$$ is now in parallel with the circuit. What should be the capacitance of $${C_2}$$ for combined circuit to act purely as a resistance for a sinusoidal excitation at a frequency of $$100$$ $$Hz$$? Calculate the rms current drawn by the combined circuit at $$100$$ $$Hz$$ if the applied voltage is $$100V$$ (rms).
4
GATE ECE 1999
MCQ (Single Correct Answer)
+1
-0.3
A modulated signal is given by s(t)= $${e^{ - at}}$$ cos $$\left[ {({\omega _c} + \Delta \omega )t} \right]$$ u (t), where a, $${\omega _c}$$ and $${\Delta \omega }$$ are positive constants, and $${\omega _c}$$ >>$${\Delta \omega }$$. The complex envelope of s(t) is given by
A
exp(-at)exp$$\left[ {({\omega _c} + \Delta \omega )t} \right]$$ u(t)
B
exp (-at)exp(j$${\Delta \omega t )}$$ u(t)
C
exp(j$${\Delta \omega t )}$$ u (t)
D
exp$$\left[ {j({\omega _c} + \Delta \omega )t} \right]$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12