Molar conductance of an electrolyte increase with dilution according to the equation:
$$\Lambda_{\mathrm{m}}=\Lambda_{\mathrm{m}}^{\circ}-\mathrm{A} \sqrt{\mathrm{c}}$$
Which of the following statements are true?
(A) This equation applies to both strong and weak electrolytes.
(B) Value of the constant $$\mathrm{A}$$ depends upon the nature of the solvent.
(C) Value of constant $$\mathrm{A}$$ is same for both $$\mathrm{BaCl}_2$$ and $$\mathrm{MgSO}_4$$
(D) Value of constant $$\mathrm{A}$$ is same for both $$\mathrm{BaCl}_2$$ and $$\mathrm{Mg}(\mathrm{OH})_2$$
Choose the most appropriate answer from the options given below:
The correct value of cell potential in volt for the reaction that occurs when the following two half cells are connected, is
$$\begin{aligned} & \mathrm{Fe}_{(\mathrm{aq})}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s}), \mathrm{E}^{\circ}=-0.44 \mathrm{~V} \\ & \mathrm{Cr}_2 \mathrm{O}_7^{2-} \text { (aq) }+14 \mathrm{H}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_2 \mathrm{O} \\ & \mathrm{E}^{\circ}=+1.33 \mathrm{~V} \end{aligned}$$
The conductivity of centimolar solution of $$\mathrm{KCl}$$ at $$25^{\circ} \mathrm{C}$$ is $$0.0210 ~\mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$$ and the resistance of the cell containing the solution at $$25^{\circ} \mathrm{C}$$ is $$60 ~\mathrm{ohm}$$. The value of cell constant is -
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:
Assertion A : In equation $$\mathrm{\Delta_rG=-nFE_{cell}}$$, value of $$\mathrm{\Delta_rG}$$ depends on n.
Reason R : $$\mathrm{E_{cell}}$$ is an intensive property and $$\mathrm{\Delta_rG}$$ is an extensive property.
In the light of the above statements, choose the correct answer from the options given below: