1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\sin \left[\tan ^{-1}\left(\frac{1-x^2}{2 x}\right)+\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right]$ is

A
0
B
1
C
-1
D
$\frac{1}{2}$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin ^{-1} \frac{1}{3}+\sin ^{-1} \frac{3}{5}+\sin ^{-1} x=\frac{\pi}{2}$ then $x=$

A
$\frac{8 \sqrt{2}+3}{5}$
B
$\frac{8 \sqrt{2}-3}{5}$
C
$\frac{8 \sqrt{2}+3}{15}$
D
$\frac{8 \sqrt{2}-3}{15}$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{3}{8}$ is

A
$\tan ^{-1}\left(\frac{42}{24}\right)$
B
$2 \tan ^{-1}\left(\frac{42}{24}\right)$
C
$\tan ^{-1}\left(\frac{24}{41}\right)$
D
$\tan ^{-1}\left(\frac{41}{12}\right)$
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$, then the value of $x$ is

A
$-\frac{\pi}{4}$
B
0
C
$\frac{\pi}{8}$
D
$\frac{\pi}{4}$
MHT CET Subjects
EXAM MAP