1
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The c.d.f. $$F(x)$$ associated with p.d.f. $$f(x)$$

$$f(x)=\left\{\begin{array}{cl}12 x^2(1-x), & \text { if } 0< x <1 \\ 0 ; & \text { otherwise }\end{array}\right.$$ is

A
$$F(x)=4 x^3+3 x^4$$
B
$$F(x)=4 x^3-3 x^4$$
C
$$F(x)=-4 x^3-3 x^4$$
D
$$F(x)=-4 x^3+3 x^4$$
2
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The raw data $$x_1, x_2, \ldots \ldots, x_{\mathrm{n}}$$ is an A.P. with common difference $$\mathrm{d}$$ and first term $$0, \bar{x}$$ and $$\sigma^2$$ are mean and variance of $$x_{\mathrm{i}}, \mathrm{i}=1,2, \ldots \ldots \mathrm{n}$$, then $$\sigma^2$$ is

A
$$\frac{\left(n^2+1\right) d^2}{24}$$
B
$$\frac{\left(\mathrm{n}^2-1\right) \mathrm{d}^2}{24}$$
C
$$\frac{\left(\mathrm{n}^2+1\right) \mathrm{d}^2}{12}$$
D
$$\frac{\left(\mathrm{n}^2-1\right) \mathrm{d}^2}{12}$$
3
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The discrete random variable $$\mathrm{X}$$ can take all possible integer values from 1 to $$\mathrm{k}$$, each with a probability $$\frac{1}{\mathrm{k}}$$, then its variance is

A
$$\frac{\mathrm{k}^2-1}{12}$$
B
$$\frac{\mathrm{k}^2-1}{6}$$
C
$$\frac{\mathrm{k}^2+1}{12}$$
D
$$\frac{\mathrm{k}^2+1}{6}$$
4
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For 20 observations of variable $x$, if $$\sum\left(x_i-2\right)=20$$ and $$\sum\left(x_i-2\right)^2=100$$, then the standard deviation of variable $$x$$ is

A
2
B
3
C
4
D
9
MHT CET Subjects
EXAM MAP