1
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the sum of the mean and the variance of a binomial distribution for 5 trials is 1.8 , then the value of $$p$$ is

A
0.4
B
0.8
C
0.18
D
0.2
2
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The c.d.f. $$F(x)$$ associated with p.d.f. $$f(x)$$

$$f(x)=\left\{\begin{array}{cl}12 x^2(1-x), & \text { if } 0< x <1 \\ 0 ; & \text { otherwise }\end{array}\right.$$ is

A
$$F(x)=4 x^3+3 x^4$$
B
$$F(x)=4 x^3-3 x^4$$
C
$$F(x)=-4 x^3-3 x^4$$
D
$$F(x)=-4 x^3+3 x^4$$
3
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The raw data $$x_1, x_2, \ldots \ldots, x_{\mathrm{n}}$$ is an A.P. with common difference $$\mathrm{d}$$ and first term $$0, \bar{x}$$ and $$\sigma^2$$ are mean and variance of $$x_{\mathrm{i}}, \mathrm{i}=1,2, \ldots \ldots \mathrm{n}$$, then $$\sigma^2$$ is

A
$$\frac{\left(n^2+1\right) d^2}{24}$$
B
$$\frac{\left(\mathrm{n}^2-1\right) \mathrm{d}^2}{24}$$
C
$$\frac{\left(\mathrm{n}^2+1\right) \mathrm{d}^2}{12}$$
D
$$\frac{\left(\mathrm{n}^2-1\right) \mathrm{d}^2}{12}$$
4
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The discrete random variable $$\mathrm{X}$$ can take all possible integer values from 1 to $$\mathrm{k}$$, each with a probability $$\frac{1}{\mathrm{k}}$$, then its variance is

A
$$\frac{\mathrm{k}^2-1}{12}$$
B
$$\frac{\mathrm{k}^2-1}{6}$$
C
$$\frac{\mathrm{k}^2+1}{12}$$
D
$$\frac{\mathrm{k}^2+1}{6}$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12