Capacitors of capacities $$\mathrm{C}_1, \mathrm{C}_2$$ and $$\mathrm{C}_3$$ are connected in series. If the combination is connected to a supply of '$$\mathrm{V}$$' volt, then potential difference across capacitor '$$\mathrm{C}_1$$' is
The plates of a parallel plate capacitor of capacity '$$\mathrm{C}_1$$' are moved closer together until they ant half their original separation. The new capacitance '$$\mathrm{C}_2$$' is
Two identical capacitors have the same capacitance '$$\mathrm{C}$$'. One of them is charged to potential '$$\mathrm{V_1}$$' and the other to $$\mathrm{V_2}$$. The negative ends of the capacitors are connected together. When positive ends are also connected, the decrease in energy of the combined system is
If the potential difference across a capacitor is increased from $$5 \mathrm{~V}$$ to $$15 \mathrm{~V}$$, then the ratio of final energy to initial energy stored in the capacitor is