1
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

A boy throws a ball vertically upwards from a bridge with velocity $5 \mathrm{~m} / \mathrm{s}$. It strikes water surface after 2 s . The height of the bridge is (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ )

A
20 m
B
15 m
C
12 m
D
10 m
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

Two girls are standing at the ends ' $A$ ' and ' $B$ ' of a ground where $\mathrm{AB}=\mathrm{b}$. The girl at ' B ' starts running in a direction perpendicular to ' $A B$ ' with velocity ' $\mathrm{V}_1$ '. The girl at ' A ' starts running simultaneously with velocity ' $\mathrm{V}_2$ ' and in shortest distance meets the other girl in time ' $t$ '. The value of ' $t$ ' is

A
$\frac{b}{\sqrt{V_1{ }^2+V_2{ }^2}}$
B
$\frac{b}{V_1+V_2}$
C
$\frac{b}{V_2-V_1}$
D
$\frac{b}{\sqrt{V_2{ }^2-V_1{ }^2}}$
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

Two boys are standing at points A and B on ground, where distance $\mathrm{AB}=\mathrm{x}$. The boy at B stars running perpendicular to $A B$ with velocity $\mathrm{v}_1$. The boy at A starts running simultaneously with velocity v and meets the other boy in time $t$. The value of $t$ is

A
$\left[\frac{x}{v-v_1}\right]^{1 / 2}$
B
$\left[\frac{x}{v_1-v}\right]^{1 / 2}$
C
$\left[\frac{x^2}{v^2-v_1^2}\right]^{1 / 2}$
D
$\left[\frac{x^2}{v_1^2-v^2}\right]^{1 / 2}$
4
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+1
-0

A body when projected at an angle ' $\theta$ ' with the horizontal reaches a maximum height ' $H$ '. The time of flight of the body will be ( $\mathrm{g}=$ acceleration due to gravity)

A
$\frac{1}{2} \sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$
B
$\sqrt{\frac{g}{2 H}}$
C
$2 \sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$
D
$\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$
MHT CET Subjects
EXAM MAP