1
GATE EE 2013
+1
-0.3
Which one of the following statements is NOT TRUE for a continuous time causal and stable LTI system?
A
All the poles of the system must lie on the left side of the j$$\mathrm\omega$$ axis
B
Zeros of the system can lie anywhere in the s-plane
C
All the poles must lie within $$\left|s\right|=1$$
D
All the roots of the characteristic equation must be located on the left side of the j$$\mathrm\omega$$ axis
2
GATE EE 2012
+1
-0.3
The unilateral Laplace transform of f(t) is $$\frac1{s^2\;+\;s\;+\;1}$$. The unilateral Laplace transform of tf(t) is
A
$$-\frac s{\displaystyle\left(s^2\;+\;s\;+\;1\right)^2}$$
B
$$-\frac{2s+1}{\displaystyle\left(s^2\;+\;s\;+\;1\right)^2}$$
C
$$\frac s{\displaystyle\left(s^2\;+\;s\;+\;1\right)^2}$$
D
$$\frac{2s+1}{\displaystyle\left(s^2\;+\;s\;+\;1\right)^2}$$
3
GATE EE 2002
+1
-0.3
Let Y(s) be the Laplace transformation of the function y(t), then the final value of the function is
A
$$\underset{s\rightarrow0}{L\mathrm{im}\;}Y\left(s\right)$$
B
$$\underset{s\rightarrow\infty}{L\mathrm{im}\;}Y\left(s\right)$$
C
$$\underset{s\rightarrow0}{L\mathrm{im}\;}sY\left(s\right)$$
D
$$\underset{s\rightarrow\infty}{L\mathrm{im}\;}sY\left(s\right)$$
4
GATE EE 1995
+1
-0.3
The Laplace transformation of f(t) is F(s). Given F(s)=$$\frac\omega{s^2+\omega^2}$$, the final value of f(t) is
A
infinity
B
zero
C
one
D
none of these
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement
EXAM MAP
Joint Entrance Examination