1
GATE CSE 2012
+1
-0.3
What is the correct translation of the following statement into mathematical logic? "Some real numbers are rational"
A
$$\exists x\left( {real\left( x \right) \vee rational\left( x \right)} \right)$$
B
$$\forall x\left( {real\left( x \right) \to rational\left( x \right)} \right)$$
C
$$\exists x\left( {real\left( x \right) \wedge rational\left( x \right)} \right)$$
D
$$\exists x\left( {rational\left( x \right) \to real\left( x \right)} \right)$$
2
GATE CSE 2012
+1
-0.3
The truth table

Represents the Boolean function

A
$$X$$
B
$$X+Y$$
C
$$X \oplus Y$$
D
$$Y$$
3
GATE CSE 2008
+1
-0.3
A set of Boolean connectives is functionally complete if all Boolean function can be synthesized using those, Which of the following sets of connectives is NOT functionally complete?
A
EX-NOR
B
implication, negation
C
OR, negation
D
NAND
4
GATE CSE 2004
+1
-0.3
Identify the correct translation into logical notation of the following assertion.

$$Some\,boys\,in\,the\,class\,are\,taller\,than\,all\,the\,girls$$
Note: taller$$\left( {x,\,y} \right)$$ is true if $$x$$ is taller than $$y$$.

A
$$\left( {\exists x} \right)\left( {boy\left( x \right) \to \left( {\forall y} \right)\left( {girl\left( y \right) \wedge taller\left( {x,y} \right)} \right)} \right)$$
B
$$\left( {\exists x} \right)\left( {boy\left( x \right) \wedge \left( {\forall y} \right)\left( {girl\left( y \right) \wedge taller\left( {x,y} \right)} \right)} \right)$$
C
$$\left( {\exists x} \right)\left( {boy\left( x \right) \to \left( {\forall y} \right)\left( {girl\left( y \right) \to taller\left( {x,y} \right)} \right)} \right)$$
D
$$\left( {\exists x} \right)\left( {boy\left( x \right) \wedge \left( {\forall y} \right)\left( {girl\left( y \right) \to taller\left( {x,y} \right)} \right)} \right)$$
GATE CSE Subjects
EXAM MAP
Medical
NEET
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12