1
GATE CSE 2012
+1
-0.3
What is the correct translation of the following statement into mathematical logic? "Some real numbers are rational"
A
$$\exists x\left( {real\left( x \right) \vee rational\left( x \right)} \right)$$
B
$$\forall x\left( {real\left( x \right) \to rational\left( x \right)} \right)$$
C
$$\exists x\left( {real\left( x \right) \wedge rational\left( x \right)} \right)$$
D
$$\exists x\left( {rational\left( x \right) \to real\left( x \right)} \right)$$
2
GATE CSE 2012
+1
-0.3
The truth table Represents the Boolean function

A
$$X$$
B
$$X+Y$$
C
$$X \oplus Y$$
D
$$Y$$
3
GATE CSE 2008
+1
-0.3
A set of Boolean connectives is functionally complete if all Boolean function can be synthesized using those, Which of the following sets of connectives is NOT functionally complete?
A
EX-NOR
B
implication, negation
C
OR, negation
D
NAND
4
GATE CSE 2004
+1
-0.3
Identify the correct translation into logical notation of the following assertion.

$$Some\,boys\,in\,the\,class\,are\,taller\,than\,all\,the\,girls$$
Note: taller$$\left( {x,\,y} \right)$$ is true if $$x$$ is taller than $$y$$.

A
$$\left( {\exists x} \right)\left( {boy\left( x \right) \to \left( {\forall y} \right)\left( {girl\left( y \right) \wedge taller\left( {x,y} \right)} \right)} \right)$$
B
$$\left( {\exists x} \right)\left( {boy\left( x \right) \wedge \left( {\forall y} \right)\left( {girl\left( y \right) \wedge taller\left( {x,y} \right)} \right)} \right)$$
C
$$\left( {\exists x} \right)\left( {boy\left( x \right) \to \left( {\forall y} \right)\left( {girl\left( y \right) \to taller\left( {x,y} \right)} \right)} \right)$$
D
$$\left( {\exists x} \right)\left( {boy\left( x \right) \wedge \left( {\forall y} \right)\left( {girl\left( y \right) \to taller\left( {x,y} \right)} \right)} \right)$$
GATE CSE Subjects
Discrete Mathematics
Programming Languages
Theory of Computation
Operating Systems
Digital Logic
Computer Organization
Database Management System
Data Structures
Computer Networks
Algorithms
Compiler Design
Software Engineering
Web Technologies
General Aptitude
EXAM MAP
Joint Entrance Examination