1
GATE CSE 2012
MCQ (Single Correct Answer)
+1
-0.3
What is the correct translation of the following statement into mathematical logic? "Some real numbers are rational"
A
$$\exists x\left( {real\left( x \right) \vee rational\left( x \right)} \right)$$
B
$$\forall x\left( {real\left( x \right) \to rational\left( x \right)} \right)$$
C
$$\exists x\left( {real\left( x \right) \wedge rational\left( x \right)} \right)$$
D
$$\exists x\left( {rational\left( x \right) \to real\left( x \right)} \right)$$
2
GATE CSE 2012
MCQ (Single Correct Answer)
+1
-0.3
The truth table GATE CSE 2012 Discrete Mathematics - Mathematical Logic Question 38 English

Represents the Boolean function

A
$$X$$
B
$$X+Y$$
C
$$X \oplus Y$$
D
$$Y$$
3
GATE CSE 2008
MCQ (Single Correct Answer)
+1
-0.3
A set of Boolean connectives is functionally complete if all Boolean function can be synthesized using those, Which of the following sets of connectives is NOT functionally complete?
A
EX-NOR
B
implication, negation
C
OR, negation
D
NAND
4
GATE CSE 2004
MCQ (Single Correct Answer)
+1
-0.3
Let $$a(x,y)$$, $$b(x,y)$$ and $$c(x,y)$$ be three statements with variables $$x$$ and $$y$$ chosen from some universe. Consider the following statement: $$$\left( {\exists x} \right)\left( {\forall y} \right)\left[ {\left( {a\left( {x,\,y} \right) \wedge b\left( {x,\,y} \right)} \right) \wedge \neg c\left( {x,\,y} \right)} \right]$$$

Which one of the following is its equivalent?

A
$$\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]$$
B
$$\left( {\exists x} \right)\left( {\forall y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \wedge \neg c\left( {x,\,y} \right)} \right]$$
C
$$ - \left[ {\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \wedge b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]} \right]$$
D
$$ - \left[ {\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]} \right]$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12