1
GATE CSE 2008
+1
-0.3
A set of Boolean connectives is functionally complete if all Boolean function can be synthesized using those, Which of the following sets of connectives is NOT functionally complete?
A
EX-NOR
B
implication, negation
C
OR, negation
D
NAND
2
GATE CSE 2004
+1
-0.3
Identify the correct translation into logical notation of the following assertion.

$$Some\,boys\,in\,the\,class\,are\,taller\,than\,all\,the\,girls$$
Note: taller$$\left( {x,\,y} \right)$$ is true if $$x$$ is taller than $$y$$.

A
$$\left( {\exists x} \right)\left( {boy\left( x \right) \to \left( {\forall y} \right)\left( {girl\left( y \right) \wedge taller\left( {x,y} \right)} \right)} \right)$$
B
$$\left( {\exists x} \right)\left( {boy\left( x \right) \wedge \left( {\forall y} \right)\left( {girl\left( y \right) \wedge taller\left( {x,y} \right)} \right)} \right)$$
C
$$\left( {\exists x} \right)\left( {boy\left( x \right) \to \left( {\forall y} \right)\left( {girl\left( y \right) \to taller\left( {x,y} \right)} \right)} \right)$$
D
$$\left( {\exists x} \right)\left( {boy\left( x \right) \wedge \left( {\forall y} \right)\left( {girl\left( y \right) \to taller\left( {x,y} \right)} \right)} \right)$$
3
GATE CSE 2004
+1
-0.3
Let $$a(x,y)$$, $$b(x,y)$$ and $$c(x,y)$$ be three statements with variables $$x$$ and $$y$$ chosen from some universe. Consider the following statement: $$\left( {\exists x} \right)\left( {\forall y} \right)\left[ {\left( {a\left( {x,\,y} \right) \wedge b\left( {x,\,y} \right)} \right) \wedge \neg c\left( {x,\,y} \right)} \right]$$\$

Which one of the following is its equivalent?

A
$$\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]$$
B
$$\left( {\exists x} \right)\left( {\forall y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \wedge \neg c\left( {x,\,y} \right)} \right]$$
C
$$- \left[ {\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \wedge b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]} \right]$$
D
$$- \left[ {\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]} \right]$$
4
GATE CSE 2002
+1
-0.3
"If X then Y unless Z" is represented by which of the following formulas in propositional logic? (" $$\neg$$ " is negation, " $$\wedge$$ " is conjunction, and " $$\to$$ " is implication)
A
$$\left( {{\rm X} \wedge \neg Z} \right) \to Y$$
B
$$\left( {X \wedge Y} \right) \to \neg Z$$
C
$${\rm X} \to \left( {Y \wedge \neg Z} \right)$$
D
$$\left( {{\rm X} \to Y} \right) \wedge \neg Z$$
GATE CSE Subjects
EXAM MAP
Medical
NEET