1
GATE CSE 1998
MCQ (Single Correct Answer)
+1
-0.3
What is the converse of the following assertion?
I stay only if you go
A
I stay if you go
B
If I stay then you go
C
If you do not go then I do not stay
D
If I do not stay then you go
2
GATE CSE 1993
MCQ (Single Correct Answer)
+1
-0.3
The proposition $$p \wedge \left( { \sim p \vee q} \right)$$ is
A
a tautology
B
$$ \Leftrightarrow \left( {p \wedge q} \right)$$
C
$$ \Leftrightarrow \left( {p \vee q} \right)$$
D
a contradiction
3
GATE CSE 1992
MCQ (Single Correct Answer)
+1
-0.3
Which of the following predicate calculus statements is/are valid?
A
$$\left( {\forall \,x} \right){\rm P}\left( x \right) \vee \left( {\forall \,x} \right)Q\left( x \right) \to \left( {\forall \,x} \right)$$
$$\left\{ {{\rm P}\left( x \right) \vee Q\left( x \right)} \right\}$$
B
$$\left( {\exists \,x} \right){\rm P}\left( x \right) \wedge \left( {\exists \,x} \right)Q\left( x \right) \to \left( {\exists \,x} \right)$$
$$\left\{ {{\rm P}\left( x \right) \wedge Q\left( x \right)} \right\}$$
C
$$\left( {\forall \,x} \right)\,\left\{ {{\rm P}\left( x \right) \vee Q\left( x \right)} \right\} \to \left( {\forall \,x} \right)\,\,$$
$${\rm P}\left( x \right) \vee \left( {\forall \,x} \right)\,\,Q\left( x \right)$$
D
$$\left( {\exists \,x} \right)\,\,\left\{ {{\rm P}\left( x \right) \vee Q\left( x \right)} \right\} \to \sim \left( {\forall \,x} \right)\,\,$$
$$\,{\rm P}\left( x \right) \vee \left( {\exists \,x} \right)Q\left( x \right)$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12