1
GATE CSE 2001
+1
-0.3
Consider two well-formed formulas in propositional logic
$$F1:P \Rightarrow \neg P$$
$$F2:\left( {P \Rightarrow \neg P} \right) \vee \left( {\neg P \Rightarrow } \right)$$

Which of the following statements is correct?

A
F1 is satisfiable, F2 is valid
B
F1 is unsatisfiable, F2 is satisfiable
C
F1 is unsatisfiable, F2 is valid
D
F1 and F2 are both satisfiable
2
GATE CSE 1998
+1
-0.3
What is the converse of the following assertion?
I stay only if you go
A
I stay if you go
B
If I stay then you go
C
If you do not go then I do not stay
D
If I do not stay then you go
3
GATE CSE 1993
+1
-0.3
The proposition $$p \wedge \left( { \sim p \vee q} \right)$$ is
A
a tautology
B
$$\Leftrightarrow \left( {p \wedge q} \right)$$
C
$$\Leftrightarrow \left( {p \vee q} \right)$$
D
4
GATE CSE 1992
+1
-0.3
Which of the following predicate calculus statements is/are valid?
A
$$\left( {\forall \,x} \right){\rm P}\left( x \right) \vee \left( {\forall \,x} \right)Q\left( x \right) \to \left( {\forall \,x} \right)$$
$$\left\{ {{\rm P}\left( x \right) \vee Q\left( x \right)} \right\}$$
B
$$\left( {\exists \,x} \right){\rm P}\left( x \right) \wedge \left( {\exists \,x} \right)Q\left( x \right) \to \left( {\exists \,x} \right)$$
$$\left\{ {{\rm P}\left( x \right) \wedge Q\left( x \right)} \right\}$$
C
$$\left( {\forall \,x} \right)\,\left\{ {{\rm P}\left( x \right) \vee Q\left( x \right)} \right\} \to \left( {\forall \,x} \right)\,\,$$
$${\rm P}\left( x \right) \vee \left( {\forall \,x} \right)\,\,Q\left( x \right)$$
D
$$\left( {\exists \,x} \right)\,\,\left\{ {{\rm P}\left( x \right) \vee Q\left( x \right)} \right\} \to \sim \left( {\forall \,x} \right)\,\,$$
$$\,{\rm P}\left( x \right) \vee \left( {\exists \,x} \right)Q\left( x \right)$$
GATE CSE Subjects
Discrete Mathematics
Programming Languages
Theory of Computation
Operating Systems
Digital Logic
Computer Organization
Database Management System
Data Structures
Computer Networks
Algorithms
Compiler Design
Software Engineering
Web Technologies
General Aptitude
EXAM MAP
Joint Entrance Examination