1
GATE CSE 2004
MCQ (Single Correct Answer)
+1
-0.3
Identify the correct translation into logical notation of the following assertion.

$$Some\,boys\,in\,the\,class\,are\,taller\,than\,all\,the\,girls$$
Note: taller$$\left( {x,\,y} \right)$$ is true if $$x$$ is taller than $$y$$.

A
$$\left( {\exists x} \right)\left( {boy\left( x \right) \to \left( {\forall y} \right)\left( {girl\left( y \right) \wedge taller\left( {x,y} \right)} \right)} \right)$$
B
$$\left( {\exists x} \right)\left( {boy\left( x \right) \wedge \left( {\forall y} \right)\left( {girl\left( y \right) \wedge taller\left( {x,y} \right)} \right)} \right)$$
C
$$\left( {\exists x} \right)\left( {boy\left( x \right) \to \left( {\forall y} \right)\left( {girl\left( y \right) \to taller\left( {x,y} \right)} \right)} \right)$$
D
$$\left( {\exists x} \right)\left( {boy\left( x \right) \wedge \left( {\forall y} \right)\left( {girl\left( y \right) \to taller\left( {x,y} \right)} \right)} \right)$$
2
GATE CSE 2004
MCQ (Single Correct Answer)
+1
-0.3
Let $$a(x,y)$$, $$b(x,y)$$ and $$c(x,y)$$ be three statements with variables $$x$$ and $$y$$ chosen from some universe. Consider the following statement: $$$\left( {\exists x} \right)\left( {\forall y} \right)\left[ {\left( {a\left( {x,\,y} \right) \wedge b\left( {x,\,y} \right)} \right) \wedge \neg c\left( {x,\,y} \right)} \right]$$$

Which one of the following is its equivalent?

A
$$\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]$$
B
$$\left( {\exists x} \right)\left( {\forall y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \wedge \neg c\left( {x,\,y} \right)} \right]$$
C
$$ - \left[ {\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \wedge b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]} \right]$$
D
$$ - \left[ {\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]} \right]$$
3
GATE CSE 2002
MCQ (Single Correct Answer)
+1
-0.3
"If X then Y unless Z" is represented by which of the following formulas in propositional logic? (" $$\neg $$ " is negation, " $$ \wedge $$ " is conjunction, and " $$ \to $$ " is implication)
A
$$\left( {{\rm X} \wedge \neg Z} \right) \to Y$$
B
$$\left( {X \wedge Y} \right) \to \neg Z$$
C
$${\rm X} \to \left( {Y \wedge \neg Z} \right)$$
D
$$\left( {{\rm X} \to Y} \right) \wedge \neg Z$$
4
GATE CSE 2001
MCQ (Single Correct Answer)
+1
-0.3
Consider two well-formed formulas in propositional logic
$$F1:P \Rightarrow \neg P$$
$$F2:\left( {P \Rightarrow \neg P} \right) \vee \left( {\neg P \Rightarrow } \right)$$

Which of the following statements is correct?

A
F1 is satisfiable, F2 is valid
B
F1 is unsatisfiable, F2 is satisfiable
C
F1 is unsatisfiable, F2 is valid
D
F1 and F2 are both satisfiable
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12