1
GATE EE 1995
MCQ (Single Correct Answer)
+1
-0.3
The rank of the following $$(n+1)$$ $$x$$ $$(n+1)$$ matrix, where $$'a'$$ is a real number is
$$$\left[ {\matrix{
1 & a & {{a^2}} & . & . & . & {{a^n}} \cr
1 & a & {{a^2}} & . & . & . & {{a^n}} \cr
. & {} & {} & {} & {} & {} & {} \cr
. & {} & {} & {} & {} & {} & {} \cr
1 & a & {{a^2}} & . & . & . & {{a^n}} \cr
} } \right]$$$
2
GATE EE 1994
MCQ (Single Correct Answer)
+1
-0.3
The eigen values of the matrix $$\left[ {\matrix{
a & 1 \cr
a & 1 \cr
} } \right]$$ are
3
GATE EE 1994
MCQ (Single Correct Answer)
+1
-0.3
$$A$$ $$\,\,5 \times 7$$ matrix has all its entries equal to $$1.$$ Then the rank of a matrix is
4
GATE EE 1994
MCQ (Single Correct Answer)
+1
-0.3
The number of linearly independent solutions of the system of equations
$$\left[ {\matrix{ 1 & 0 & 2 \cr 1 & { - 1} & 0 \cr 2 & { - 2} & 0 \cr } } \right]\,\,\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = 0$$ is equal to
$$\left[ {\matrix{ 1 & 0 & 2 \cr 1 & { - 1} & 0 \cr 2 & { - 2} & 0 \cr } } \right]\,\,\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = 0$$ is equal to
Questions Asked from Linear Algebra (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE EE 2024 (2)
GATE EE 2023 (2)
GATE EE 2022 (1)
GATE EE 2017 Set 1 (1)
GATE EE 2016 Set 2 (1)
GATE EE 2016 Set 1 (1)
GATE EE 2015 Set 1 (1)
GATE EE 2015 Set 2 (1)
GATE EE 2014 Set 2 (1)
GATE EE 2014 Set 1 (1)
GATE EE 2012 (1)
GATE EE 2010 (1)
GATE EE 2009 (1)
GATE EE 2008 (2)
GATE EE 2007 (1)
GATE EE 2005 (1)
GATE EE 2002 (1)
GATE EE 1999 (2)
GATE EE 1998 (4)
GATE EE 1997 (1)
GATE EE 1995 (3)
GATE EE 1994 (3)
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits