1
GATE EE 2002
MCQ (Single Correct Answer)
+1
-0.3
The determinant of the matrix $$\left[ {\matrix{ 1 & 0 & 0 & 0 \cr {100} & 1 & 0 & 0 \cr {100} & {200} & 1 & 0 \cr {100} & {200} & {300} & 1 \cr } } \right]$$ is
A
$$100$$
B
$$200$$
C
$$1$$
D
$$300$$
2
GATE EE 1999
MCQ (Single Correct Answer)
+1
-0.3
If $$A = \left[ {\matrix{ 1 & { - 2} & { - 1} \cr 2 & 3 & 1 \cr 0 & 5 & { - 2} \cr } } \right]$$ and $$adj (A)$$ $$ = \left[ {\matrix{ { - 11} & { - 9} & 1 \cr 4 & { - 2} & { - 3} \cr {10} & k & 7 \cr } } \right]$$ then $$k=$$
A
$$-5$$
B
$$3$$
C
$$-3$$
D
$$5$$
3
GATE EE 1999
Subjective
+1
-0
Find the eigen values and eigen vectors of the matrix $$\left[ {\matrix{ 3 & { - 1} \cr { - 1} & 3 \cr } } \right]$$
4
GATE EE 1998
MCQ (Single Correct Answer)
+1
-0.3
$$A = \left[ {\matrix{ 2 & 0 & 0 & { - 1} \cr 0 & 1 & 0 & 0 \cr 0 & 0 & 3 & 0 \cr { - 1} & 0 & 0 & 4 \cr } } \right].$$ The sum of the eigen values of the matrix $$A$$ is
A
$$10$$
B
$$-10$$
C
$$-24$$
D
$$22$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12