1
GATE EE 2002
Subjective
+5
-0
The open loop transfer function of a unity feedback system is given by $$G\left( s \right) = {{2\left( {s + \alpha } \right)} \over {s\left( {s + 2} \right)\left( {s + 10} \right)}}.$$ Sketch the root locus as $$\alpha $$ varies from $$0$$ to $$\infty $$. Find the angle and real axis intercept of the asymptotes, breakaway points and the imaginary axis crossing points, if any
2
GATE EE 2001
Subjective
+5
-0
Given the characteristic equation $${s^3} + 2{s^2} + Ks + K = 0.$$ Sketch the root focus as $$K$$ varies from zero to infinity. Find the angle and real axis intercept of the asymptotes, break-away / break-in points, and imaginary axis crossing points, if any
3
GATE EE 2000
Subjective
+5
-0
A unity feedback system has open loop transfer function $$G\left( s \right) = {{K\left( {s + 5} \right)} \over {s\left( {s + 2} \right)}};K \ge 0$$
(a) Draw a rough sketch of the root locus plot; given that the complex roots ofthe characteristic equation move along a circle.
(b) As K increases, does the system become less stable? Justify your answer.
(c) Find the value of $$K$$ (if it exists) so that the damping $$\xi $$ of the complex closed loop poles is $$0.3.$$
4
GATE EE 1991
Subjective
+5
-0
A unity feedback system has the forward loop transfer function $$G\left( s \right) = {{K{{\left( {s + 2} \right)}^2}} \over {{s^2}\left( {s - 1} \right)}}$$

(a) Determine the range of $$K$$ for stable operation

(b) Determine the imaginary axis crossover points

(c) Without calculating the real axis break - away points, sketch the form of root loci for the system.

GATE EE Subjects
EXAM MAP