1
GATE EE 2001
Subjective
+5
-0
Given the characteristic equation $${s^3} + 2{s^2} + Ks + K = 0.$$ Sketch the root focus as $$K$$ varies from zero to infinity. Find the angle and real axis intercept of the asymptotes, break-away / break-in points, and imaginary axis crossing points, if any
2
GATE EE 2000
Subjective
+5
-0
A unity feedback system has open loop transfer function $$G\left( s \right) = {{K\left( {s + 5} \right)} \over {s\left( {s + 2} \right)}};K \ge 0$$
(a) Draw a rough sketch of the root locus plot; given that the complex roots ofthe characteristic equation move along a circle.
(b) As K increases, does the system become less stable? Justify your answer.
(c) Find the value of $$K$$ (if it exists) so that the damping $$\xi $$ of the complex closed loop poles is $$0.3.$$
(a) Draw a rough sketch of the root locus plot; given that the complex roots ofthe characteristic equation move along a circle.
(b) As K increases, does the system become less stable? Justify your answer.
(c) Find the value of $$K$$ (if it exists) so that the damping $$\xi $$ of the complex closed loop poles is $$0.3.$$
3
GATE EE 1991
Subjective
+5
-0
A unity feedback system has the forward loop transfer function $$G\left( s \right) = {{K{{\left( {s + 2} \right)}^2}} \over {{s^2}\left( {s - 1} \right)}}$$
(a) Determine the range of $$K$$ for stable operation
(b) Determine the imaginary axis crossover points
(c) Without calculating the real axis break - away points, sketch the form of root loci for the system.
Questions Asked from Root Locus Techniques (Marks 5)
Number in Brackets after Paper Indicates No. of Questions
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics