1
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
The line integral of function $$F=yzi,$$ in the counterclockwise direction, along the circle $${x^2} + {y^2} = 1$$ at $$z=1$$ is
A
$$ - 2\pi $$
B
$$ - \pi $$
C
$$ \pi $$
D
$$2\pi $$
2
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Let $$\,\,\nabla .\left( {fV} \right) = {x^2}y + {y^2}z + {z^2}x,\,\,$$ where $$f$$ and $$V$$ are scalar and vector fields respectively. If $$V=yi+zj+xk,$$ then $$\,V.\left( {\nabla f} \right)$$ is
A
$${x^2}y + {y^2}z + {z^2}x$$
B
$$2xy+2yz+2zx$$
C
$$x+y+z$$
D
$$0$$
3
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
The two vectors $$\left[ {\matrix{ {1,} & {1,} & {1} \cr } } \right]$$ and $$\left[ {\matrix{ {1,} & {a,} & {{a^2}} \cr } } \right]$$ where $$a = {{ - 1} \over 2} + j{{\sqrt 3 } \over 2}$$ are
A
Orthonormal
B
Orthogonal
C
Parallel
D
Collinear
4
GATE EE 2010
MCQ (Single Correct Answer)
+1
-0.3
Divergence of the $$3$$ $$-$$ dimensional radial vector field $$\overrightarrow r $$ is
A
$$3$$
B
$${1 \over r}$$
C
$$\widehat i + \widehat j + \widehat k$$
D
$$3\left( {\widehat i + \widehat j + \widehat k} \right)$$
GATE EE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12