1
GATE EE 2010
MCQ (Single Correct Answer)
+1
-0.3
Divergence of the $$3$$ $$-$$ dimensional radial vector field $$\overrightarrow r $$ is
A
$$3$$
B
$${1 \over r}$$
C
$$\widehat i + \widehat j + \widehat k$$
D
$$3\left( {\widehat i + \widehat j + \widehat k} \right)$$
2
GATE EE 2007
MCQ (Single Correct Answer)
+1
-0.3
Divergence of the vector field $$v\left( {x,y,z} \right) = - \left( {x\,\cos xy + y} \right)\widehat i + \left( {y\,\cos xy} \right)\widehat j + \left[ {\left( {\sin {z^2}} \right) + {x^2} + {y^2}} \right]\widehat k\,\,$$
A
$$2z\,\cos {z^2}$$
B
$$\,\sin \,xy + 2z\,\cos {z^2}$$
C
$$x\,\sin xy - \cos z$$
D
none of these
3
GATE EE 2002
MCQ (Single Correct Answer)
+1
-0.3
Given a vector field $${\overrightarrow F ,}$$ the divergence theorem states that
A
$$\int\limits_s {\overrightarrow F .d\overrightarrow s = \int\limits_v \nabla .\overrightarrow F \,dv} $$
B
$$\int\limits_s {\overrightarrow F .d\overrightarrow s = \int\limits_v \nabla \times \overrightarrow F \,dv} $$
C
$$\int\limits_s {\overrightarrow F \times d\overrightarrow s = \int\limits_v \nabla .\overrightarrow F \,dv} $$
D
$$\int\limits_s {\overrightarrow F \times d\overrightarrow s = \int\limits_v \nabla \times \overrightarrow F \,dv} $$
4
GATE EE 1994
MCQ (Single Correct Answer)
+1
-0.3
The directional derivative of $$f\left( {x,y} \right) = 2{x^2} + 3{y^2} + {z^2}\,\,$$ at point $$P\left( {2,1,3} \right)\,\,$$ in the direction of the vector $$\,\,a = \overrightarrow i - 2\overrightarrow k \,\,$$ is
A
$$4/\sqrt 5 $$
B
$$-$$ $$4/\sqrt 5 $$
C
$$\sqrt 5 /4$$
D
$$-$$ $$\sqrt 5 /4$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12