1
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Let $$\,\,\nabla .\left( {fV} \right) = {x^2}y + {y^2}z + {z^2}x,\,\,$$ where $$f$$ and $$V$$ are scalar and vector fields respectively. If $$V=yi+zj+xk,$$ then $$\,V.\left( {\nabla f} \right)$$ is
2
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
The line integral of function $$F=yzi,$$ in the counterclockwise direction, along the circle $${x^2} + {y^2} = 1$$ at $$z=1$$ is
3
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
The two vectors $$\left[ {\matrix{
{1,} & {1,} & {1} \cr
} } \right]$$ and $$\left[ {\matrix{
{1,} & {a,} & {{a^2}} \cr
} } \right]$$ where $$a = {{ - 1} \over 2} + j{{\sqrt 3 } \over 2}$$ are
4
GATE EE 2010
MCQ (Single Correct Answer)
+1
-0.3
Divergence of the $$3$$ $$-$$ dimensional radial vector field $$\overrightarrow r $$ is
Questions Asked from Vector Calculus (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics