1
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Let $$\,\,\nabla .\left( {fV} \right) = {x^2}y + {y^2}z + {z^2}x,\,\,$$ where $$f$$ and $$V$$ are scalar and vector fields respectively. If $$V=yi+zj+xk,$$ then $$\,V.\left( {\nabla f} \right)$$ is
A
$${x^2}y + {y^2}z + {z^2}x$$
B
$$2xy+2yz+2zx$$
C
$$x+y+z$$
D
$$0$$
2
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
The line integral of function $$F=yzi,$$ in the counterclockwise direction, along the circle $${x^2} + {y^2} = 1$$ at $$z=1$$ is
A
$$ - 2\pi $$
B
$$ - \pi $$
C
$$ \pi $$
D
$$2\pi $$
3
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
The two vectors $$\left[ {\matrix{ {1,} & {1,} & {1} \cr } } \right]$$ and $$\left[ {\matrix{ {1,} & {a,} & {{a^2}} \cr } } \right]$$ where $$a = {{ - 1} \over 2} + j{{\sqrt 3 } \over 2}$$ are
A
Orthonormal
B
Orthogonal
C
Parallel
D
Collinear
4
GATE EE 2010
MCQ (Single Correct Answer)
+1
-0.3
Divergence of the $$3$$ $$-$$ dimensional radial vector field $$\overrightarrow r $$ is
A
$$3$$
B
$${1 \over r}$$
C
$$\widehat i + \widehat j + \widehat k$$
D
$$3\left( {\widehat i + \widehat j + \widehat k} \right)$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12