1
GATE EE 2017 Set 2
Numerical
+1
-0
The initial charge in the 1 F capacitor present in the circuit shown is zero. The energy in joules transferred from the DC source until steady state condition is reached equals ______. (Give the answer up to one decimal place.)
2
GATE EE 2016 Set 1
Numerical
+1
-0
In the given circuit, the current supplied by the battery, in ampere, is ________.
3
GATE EE 2015 Set 2
+1
-0.3
A series RL circuit is excited at t = 0 by closing a switch as shown in the figure. Assuming zero initial conditions, the value of $$\frac{\mathrm d^2\mathrm I}{\mathrm{dt}^2}$$ at t=0+ is
A
$$\frac VL$$
B
$$\frac{-V}R$$
C
$$0$$
D
$$\frac{-RV}{L^2}$$
4
GATE EE 2014 Set 2
+1
-0.3
The switch SW shown in the circuit is kept at position ‘1’ for a long duration. At t = 0+, the switch is moved to position ‘2’ Assuming $$\left|V_{02}\right|\;>\;\left|V_{01}\right|$$, the voltage $$V_C\left(t\right)$$ across capacitor is
A
$$v_c\left(t\right)=-V_{02}\left(1-e^{-t/2RC}\right)-V_{01}$$
B
$$v_c\left(t\right)=V_{02}\left(1-e^{-t/2RC}\right)+V_{01}$$
C
$$v_c\left(t\right)=-\left(V_{02}+V_{01}\right)\left(1-e^{-t/2RC}\right)-V_{01}$$
D
$$v_c\left(t\right)=\left(V_{02}-V_{01}\right)\left(1-e^{-t/2RC}\right)+V_{01}$$
EXAM MAP
Medical
NEET