1
GATE EE 2022
MCQ (Single Correct Answer)
+2
-0.67

Consider a matrix $$A = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 4 & { - 2} \cr 0 & 1 & 1 \cr } } \right]$$. The matrix A satisfies the equation 6A$$-$$1 = A2 + cA + dI, where c and d are scalars and I is the identify matrix. Then (c + d) is equal to

A
5
B
17
C
$$-$$6
D
11
2
GATE EE 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The eigen values of the matrix given below are $$\left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 0 & { - 3} & { - 4} \cr } } \right]$$
A
$$(0,-1,-3)$$
B
$$(0,-2,-3)$$
C
$$(0,2,3)$$
D
$$(0,1,3)$$
3
GATE EE 2016 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Let $$P = \left[ {\matrix{ 3 & 1 \cr 1 & 3 \cr } } \right].$$ Consider the set $$S$$ of all vectors $$\left( {\matrix{ x \cr y \cr } } \right)$$ such that $${a^2} + {b^2} = 1$$ where $$\left( {\matrix{ a \cr b \cr } } \right) = P\left( {\matrix{ x \cr y \cr } } \right).$$ Then $$S$$ is
A
a circle of radius $$\sqrt {10} $$
B
a circle of radius $${1 \over {\sqrt {10} }}$$
C
an ellipse with major axis along $$\left( {\matrix{ 1 \cr 1 \cr } } \right)$$
D
an ellipse with minor axis along $$\left( {\matrix{ 1 \cr 1 \cr } } \right)$$
4
GATE EE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let the eigenvalues of a $$2 \times 2$$ matrix $$A$$ be $$1,-2$$ with eigenvectors $${x_1}$$ and $${x_2}$$ respectively. Then the eigenvalues and eigenvectors of the matrix $${A^2} - 3A + 4{\rm I}$$ would respectively, be
A
$$2,14;{\,x_1},{x_2}$$
B
$$2,14;{x_1} + {x_2}:{x_1} - {x_2}$$
C
$$2,0;{\,x_1},{x_2}$$
D
$$2,0;\,{x_1} + {x_2},\,{x_1} - {x_2}$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12