1
GATE EE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let the eigenvalues of a $$2 \times 2$$ matrix $$A$$ be $$1,-2$$ with eigenvectors $${x_1}$$ and $${x_2}$$ respectively. Then the eigenvalues and eigenvectors of the matrix $${A^2} - 3A + 4{\rm I}$$ would respectively, be
A
$$2,14;{\,x_1},{x_2}$$
B
$$2,14;{x_1} + {x_2}:{x_1} - {x_2}$$
C
$$2,0;{\,x_1},{x_2}$$
D
$$2,0;\,{x_1} + {x_2},\,{x_1} - {x_2}$$
2
GATE EE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The maximum value of $$'a'$$ such that the matrix $$\left[ {\matrix{ { - 3} & 0 & { - 2} \cr 1 & { - 1} & 0 \cr 0 & a & { - 2} \cr } } \right]$$ has three linearly independent real eigenvectors is
A
$${2 \over {3\sqrt 3 }}$$
B
$${1 \over {3\sqrt 3 }}$$
C
$${{1 + 2\sqrt 3 } \over {3\sqrt 3 }}$$
D
$${{1 + \sqrt 3 } \over {3\sqrt 3 }}$$
3
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
$$A = \left[ {\matrix{ p & q \cr r & s \cr } } \right];B = \left[ {\matrix{ {{p^2} + {q^2}} & {pr + qs} \cr {pr + qs} & {{r^2} + {s^2}} \cr } } \right]$$
If the rank of matrix $$A$$ is $$N$$, then the rank of matrix $$B$$ is
A
$$N/2$$
B
$$N-1$$
C
$$N$$
D
$$2$$ $$N$$
4
GATE EE 2014 Set 1
Numerical
+2
-0
A system matrix is given as follows $$$A = \left[ {\matrix{ 0 & 1 & { - 1} \cr { - 6} & { - 11} & 6 \cr { - 6} & { - 11} & 5 \cr } } \right].$$$

The absolute value of the ratio of the maximum eigenvalue to the minimum eigenvalue is ___________.

Your input ____
GATE EE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12