1
GATE EE 2014 Set 1
Numerical
+2
-0
A system matrix is given as follows
$$$A = \left[ {\matrix{
0 & 1 & { - 1} \cr
{ - 6} & { - 11} & 6 \cr
{ - 6} & { - 11} & 5 \cr
} } \right].$$$
The absolute value of the ratio of the maximum eigenvalue to the minimum eigenvalue is ___________.
Your input ____
2
GATE EE 2013
MCQ (Single Correct Answer)
+2
-0.6
The equation $$\left[ {\matrix{
2 & { - 2} \cr
1 & { - 1} \cr
} } \right]\left[ {\matrix{
{{x_1}} \cr
{{x_2}} \cr
} } \right] = \left[ {\matrix{
0 \cr
0 \cr
} } \right]$$ has
3
GATE EE 2013
MCQ (Single Correct Answer)
+2
-0.6
A matrix has eigen values $$-1$$ and $$-2.$$ The corresponding eigenvectors are $$\left[ {\matrix{
1 \cr
{ - 1} \cr
} } \right]$$ and $$\left[ {\matrix{
1 \cr
{ - 2} \cr
} } \right]$$ respectively. The matrix is
4
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
The two vectors $$\left[ {\matrix{
1 & 1 & 1 \cr
} } \right]$$ and $$\left[ {\matrix{
1 & a & {{a^2}} \cr
} } \right]$$ where $$a = - {1 \over 2} + j{{\sqrt 3 } \over 2}$$ and $$j = \sqrt { - 1} $$ are
Questions Asked from Linear Algebra (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits