1
GATE CSE 2005
+2
-0.6
Let $${N_f}$$ and $${N_p}$$ denote the classes of languages accepted by non-deterministic finite automata and non-deterministic push-down automata, respectively. Let $${D_f}$$ and $${D_p}$$ denote the classes of languages accepted by deterministic finite automata and deterministic push-down automata, respectively. Which one of the following is TRUE?
A
$${D_f} \subset {N_f}$$ and $${D_P} \subset {N_p}$$
B
$${D_f} \subset {N_f}$$ and $${D_P} = {N_p}$$
C
$${D_f} = {N_f}$$ and $${D_P} = {N_p}$$
D
$${D_f} = {N_f}$$ and $${D_P} \subset {N_p}$$
2
GATE CSE 2005
+2
-0.6
Consider the language :
$${L_1} = \left\{ {{a^n}{b^n}{c^m}\left| {n,m > 0} \right.} \right\}$$ and $${L_2} = \left\{ {{a^n}{b^m}{c^m}\left| {n,m > 0} \right.} \right\}$$

Which of the following statement is FALSE?

A
$${L_1}\, \cap \,{L_2}$$ is a context-free language
B
$${L_1}\, \cap \,{L_2}$$ is a context-free language
C
$${L_1}$$ and $${L_2}$$ are context-free language
D
$${L_1}\, \cap \,{L_2}$$ is a context sensitive language
3
GATE CSE 2005
+2
-0.6
Consider the language :
$${L_1}\, = \left\{ {w\,{w^R}\,\left| {w \in \left\{ {0,1} \right\}{}^ * } \right.} \right\}$$
$${L_2}\, = \left\{ {w\, \ne {w^R}\,\left| {w \in \left\{ {0,1} \right\}{}^ * } \right.} \right\}$$ where $$\ne$$ is a special symbol
$${L_3}\, = \left\{ {w\,w\,\left| {w \in \left\{ {0,1} \right\}{}^ * } \right.} \right\}$$

Which one of the following is TRUE?

A
$${L_1}$$ $$=$$ is a deterministic $$CFL$$
B
$${L_2}$$ $$=$$ is a deterministic $$CFL$$
C
$${L_3}$$ is a $$CFL,$$ but not a deterministic $$CFL$$
D
$${L_3}$$ IS A DETERMINISTIC $$CFL$$
4
GATE CSE 2004
+2
-0.6
Consider the following grammar $$G:$$
\eqalign{ & S \to bS\,\left| {\,aA\,\left| {\,b} \right.} \right. \cr & A \to bA\,\left| {\,aB} \right. \cr & B \to bB\,\left| {\,aS\,\left| {\,a} \right.} \right. \cr}

Let $${N_a}\left( w \right)$$ and $${N_b}\left( w \right)$$ denote the number of $$a's$$ and $$b's$$ in a string $$w$$ respectively. The language
$$L\left( G \right)\,\,\, \subseteq \left\{ {a,b} \right\} +$$ generated by $$G$$ is

A
$$\left\{ {w\,\left| {Na\left( w \right) > 3Nb\left( w \right)} \right.} \right\}$$
B
$$\left\{ {w\,\left| {Nb\left( w \right) > 3Na\left( w \right)} \right.} \right\}$$
C
$$\left\{ {w\,\left| {Na\left( w \right) = 3k,k \in \left\{ {0,1,2,...} \right\}} \right.} \right\}$$
D
$$\left\{ {w\,\left| {Nb\left( w \right) = 3k,k \in \left\{ {0,1,2,...} \right\}} \right.} \right\}$$
GATE CSE Subjects
Discrete Mathematics
Programming Languages
Theory of Computation
Operating Systems
Digital Logic
Computer Organization
Database Management System
Data Structures
Computer Networks
Algorithms
Compiler Design
Software Engineering
Web Technologies
General Aptitude
EXAM MAP
Joint Entrance Examination