$$\,\,\,\,\,\,\,\,{\rm I}.\,\,\,\,\,\,\,$$ $$\left\{ {{a^m}{b^n}{c^p}{d^q}} \right.|m + p = n + q,$$ where $$\left. {m,n,p,q \ge 0} \right\}$$
$$\,\,\,\,\,\,{\rm II}.\,\,\,\,\,\,\,$$ $$\left\{ {{a^m}{b^n}{c^p}{d^q}} \right.|m = n$$ and $$p=q,$$ where $$\left. {m,n,p,q \ge 0} \right\}$$
$$\,\,\,\,{\rm III}.\,\,\,\,\,\,\,$$ $$\left\{ {{a^m}{b^n}{c^p}{d^q}} \right.|m = n = p$$ and $$p \ne q,$$ where $$\left. {m,n,p,q \ge 0} \right\}$$
$$\,\,\,\,{\rm IV}.\,\,\,\,\,\,\,$$ $$\left\{ {{a^m}{b^n}{c^p}{d^q}} \right.|mn = p + q,$$ where $$\left. {m,n,p,q \ge 0} \right\}$$
Which of the languages above are context-free?
$$\eqalign{ & {G_1}:\,\,\,\,\,S \to aS|B,\,\,B \to b|bB \cr & {G_2}:\,\,\,\,\,S \to aA|bB,\,\,A \to aA|B|\varepsilon ,\,\,B \to bB|\varepsilon \cr} $$
Which one of the following pairs of languages is generated by $${G_1}$$ and $${G_2}$$, respectively?
$$\eqalign{ & {L_1} = \left\{ {{0^n}\,{1^n}\,\left| {n \ge } \right.0} \right\} \cr & {L_2} = \left\{ {wc{w^r}\,\left| {w \in \left\{ {0,\,1} \right\}{}^ * } \right.} \right\} \cr & {L_3} = \left\{ {w{w^r}\,\left| {w \in \left\{ {0,\,1} \right\}{}^ * } \right.} \right\} \cr} $$
Here, $${w^r}$$ is the reverse of the string $$w.$$ Which of these languages are deterministic Context- free languages?