1
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider the $$CFG$$ with $$\left\{ {S,A,B} \right\}$$ as the non-terminal alphabet, $$\left\{ {a,b} \right\}$$ as the terminal alphabet, $$S$$ as the start symbol and the following set of production rules:
For the correct string of (earlier question) how many derivation trees are there?
2
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the following statements about the context-free grammar
$$G = \left\{ {S \to SS,\,S \to ab,\,S \to ba,\,S \to \varepsilon } \right\}$$
$$1.$$ $$G$$ is ambiguous
$$2.$$ $$G$$ produces all strings with equal number of $$a's$$ and $$b's$$
$$3.$$ $$G$$ can be accepted by a deterministic $$PDA$$.
$$G = \left\{ {S \to SS,\,S \to ab,\,S \to ba,\,S \to \varepsilon } \right\}$$
$$1.$$ $$G$$ is ambiguous
$$2.$$ $$G$$ produces all strings with equal number of $$a's$$ and $$b's$$
$$3.$$ $$G$$ can be accepted by a deterministic $$PDA$$.
Which combination below expresses all the true statements about $$G?$$
3
GATE CSE 2005
MCQ (Single Correct Answer)
+2
-0.6
Let $${N_f}$$ and $${N_p}$$ denote the classes of languages accepted by non-deterministic finite automata and non-deterministic push-down automata, respectively. Let $${D_f}$$ and $${D_p}$$ denote the classes of languages accepted by deterministic finite automata and deterministic push-down automata, respectively. Which one of the following is TRUE?
4
GATE CSE 2005
MCQ (Single Correct Answer)
+2
-0.6
Consider the language :
$${L_1} = \left\{ {{a^n}{b^n}{c^m}\left| {n,m > 0} \right.} \right\}$$ and $${L_2} = \left\{ {{a^n}{b^m}{c^m}\left| {n,m > 0} \right.} \right\}$$
$${L_1} = \left\{ {{a^n}{b^n}{c^m}\left| {n,m > 0} \right.} \right\}$$ and $${L_2} = \left\{ {{a^n}{b^m}{c^m}\left| {n,m > 0} \right.} \right\}$$
Which of the following statement is FALSE?
Questions Asked from Push Down Automata and Context Free Language (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE CSE 2024 Set 2 (1)
GATE CSE 2024 Set 1 (1)
GATE CSE 2023 (2)
GATE CSE 2022 (2)
GATE CSE 2021 Set 2 (1)
GATE CSE 2021 Set 1 (1)
GATE CSE 2020 (1)
GATE CSE 2019 (1)
GATE CSE 2018 (1)
GATE CSE 2016 Set 1 (1)
GATE CSE 2015 Set 3 (1)
GATE CSE 2014 Set 3 (1)
GATE CSE 2013 (1)
GATE CSE 2011 (1)
GATE CSE 2010 (1)
GATE CSE 2008 (3)
GATE CSE 2007 (3)
GATE CSE 2006 (1)
GATE CSE 2005 (3)
GATE CSE 2004 (3)
GATE CSE 1999 (1)
GATE CSE 1998 (2)
GATE CSE 1997 (1)
GATE CSE 1996 (2)
GATE CSE 1994 (1)
GATE CSE 1992 (1)
GATE CSE 1989 (1)
GATE CSE 1987 (2)
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages