1
GATE ME 2006
+1
-0.3
In a two-dimensional velocity field with velocities $$u$$ and $$v$$ along $$x$$ and $$y$$ directions respectively, the convective acceleration along the $$x$$-direction is given by
A
$$u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}}$$
B
$$u{{\partial u} \over {\partial x}} + v{{\partial v} \over {\partial y}}$$
C
$$u{{\partial v} \over {\partial x}} + v{{\partial u} \over {\partial y}}$$
D
$$v{{\partial u} \over {\partial x}} + u{{\partial u} \over {\partial y}}$$
2
GATE ME 2005
+1
-0.3
The velocity components in the $$x$$ and $$y$$ directions of a two dimensional potential flow are $$u$$ and $$v$$, respectively. Then $${{\partial u} \over {\partial y}}$$ is equal to
A
$${{\partial v} \over {\partial x}}$$
B
$$- {{\partial v} \over {\partial x}}$$
C
$${{\partial v} \over {\partial y}}$$
D
$$- {{\partial v} \over {\partial y}}$$
3
GATE ME 2004
+1
-0.3
A fluid flow is represented by the velocity field $$\overrightarrow V = ax\,\overrightarrow i + ay\,\overrightarrow j ,$$ where a constant . The equation of stream line passing through a point $$(1, 2)$$ is
A
$$x-2y=0$$
B
$$2x+y=0$$
C
$$2x-y=0$$
D
$$x+2y=0$$
4
GATE ME 1994
+1
-0.3
Streamlines, path lines and streak lines are virtually identical for
A
Uniform flow
B
Flow of ideal fluids
C
D
Non uniform flow
GATE ME Subjects
EXAM MAP
Medical
NEET