1
GATE EE 1999
Subjective
+5
-0
For the small signal $$BJT$$ amplifier shown in given figure. Determine at $$1$$ $$kHz$$ the following GATE EE 1999 Analog Electronics - Small Signal Modeling Question 7 English

$$(a)$$ $$\,\,\,\,\,\,\,\,$$ Quiescent collector current $${{\rm I}_{CQ}}$$
$$(b)$$ $$\,\,\,\,\,\,\,\,$$ Small signal voltage gain $${{{V_o}} \over {{V_i}}}$$
$$(c)$$ $$\,\,\,\,\,\,\,\,$$ Max. possible swing of the collector current.

2
GATE EE 1992
Subjective
+5
-0
For the $$JFET$$ amplifier shown in figure $$\mu = 100,\,{r_d} = 50k\Omega $$
$$(i)$$ Draw the $$AC$$ equivalent circuit
$$(ii)$$ Find the voltage gain of the amp GATE EE 1992 Analog Electronics - Small Signal Modeling Question 2 English
3
GATE EE 1991
Subjective
+5
-0
Figure shows a common emitter amplifier GATE EE 1991 Analog Electronics - Small Signal Modeling Question 3 English 1 GATE EE 1991 Analog Electronics - Small Signal Modeling Question 3 English 2

$$(a)$$ Simplify the circuit by applying thevenin's theorem to biasing network $${R_1},{R_2}$$ at
$$\,\,\,\,\,\,\,$$ the base of the transistor.
$$(b)$$ Assuming $${C_s}$$ to be a short for frequency range considered. Draw the small signal
$$\,\,\,\,\,\,\,$$ $$a.c.$$ model of the circuit obtained in $$(a)$$ by using the simple model for the
$$\,\,\,\,\,\,\,$$ transistor shown in figure.
$$(c)$$ Evaluate the small signal gain $$\left( {{{{V_0}} \over {{V_i}}}} \right)$$ of the amplifier.

GATE EE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12