1
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Consider the differential equation $${x^2}{{{d^2}y} \over {d{x^2}}} + x{{dy} \over {dx}} - y = 0.\,\,$$ Which of the following is a solution to this differential equation for $$x > 0?$$
2
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The solution for the differential equation $$\,\,{{{d^2}x} \over {d{t^2}}} = - 9x,\,\,$$ with initial conditions $$x(0)=1$$ and $${{{\left. {\,\,\,\,{{dx} \over {dt}}} \right|}_{t = 0}} = 1,\,\,}$$ is
3
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
For the differential equation $${{{d^2}x} \over {d{t^2}}} + 6{{dx} \over {dt}} + 8x = 0$$ with initial conditions $$x(0)=1$$ and $${\left( {{{dx} \over {dt}}} \right)_{t = 0}}$$ $$=0$$ the solution
4
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
For the equation $$\,\,\mathop x\limits^{ \bullet \bullet } \left( t \right) + 3\mathop x\limits^ \bullet \left( t \right) + 2x\left( t \right) = 5,\,\,\,$$ the solution $$x(t)$$ approaches the following values as $$t \to \infty $$
Questions Asked from Differential Equations (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics